Теплотворная способность дизельного топлива кдж кг. Тепловые машины

Подписаться
Вступай в сообщество «passport13.com»!
ВКонтакте:

Различные виды топлива (твёрдое, жидкое и газообразное) характеризуются общими и специфическими свойствами. К общим свойствам топлива относятся удельная теплота сгорания и влажность, к специфическим - зольность, сернистость (содержание серы), плотность, вязкость и другие свойства.

Удельная теплота сгорания топлива - это количество теплоты, которое выделяется при полном сгорании \(1\) кг твёрдого или жидкого топлива или \(1\) м³ газообразного топлива.

Энергетическая ценность топлива в первую очередь определяется его удельной теплотой сгорания.

Удельная теплота сгорания обозначается буквой \(q\). Единицей удельной теплоты сгорания является \(1\) Дж/кг для твёрдого и жидкого топлива и \(1\) Дж/м³ для газообразного топлива.

Удельную теплоту сгорания на опыте определяют довольно сложными методами.

Таблица 2. Удельная теплота сгорания некоторых видов топлива.

Твёрдое топливо

Вещество

Удельная теплота сгорания,

Бурый уголь
Древесный уголь
Дрова сухие
Древесные чурки

Каменный уголь

Каменный уголь

марки А-II

Кокс
Порох
Торф

Жидкое топливо

Газообразное топливо

(при нормальных условиях)

Вещество

Удельная теплота сгорания,

Водород
Генераторный газ
Коксовый газ
Природный газ
Светильный газ

Из этой таблицы видно, что наибольшей является удельная теплота сгорания водорода, она равна \(120\) МДж/м³. Это значит, что при полном сгорании водорода объёмом \(1\) м³ выделяется \(120\) МДж \(=\)\(120\) ⋅ 10 6 Дж энергии.

Водород - один из высокоэнергетических видов топлива. Кроме того, продуктом сгорания водорода является обычная вода, в отличие от других видов топлива, где продуктами сгорания являются углекислый и угарный газы, зола и топочные шлаки. Это делает водород экологически наиболее чистым топливом.

Однако газообразный водород взрывоопасен. К тому же он имеет самую малую плотность в сравнении с другими газами при равной температуре и давлении, что создаёт сложности со сжижением водорода и его транспортировкой.

Общее количество теплоты \(Q\), выделяемое при полном сгорании \(m\) кг твёрдого или жидкого топлива, вычисляется по формуле:

Общее количество теплоты \(Q\), выделяемое при полном сгорании \(V\) м³ газообразного топлива, вычисляется по формуле:

Влажность (содержание влаги) топлива снижает его теплоту сгорания, так как увеличивается расход теплоты на испарение влаги и увеличивается объём продуктов сгорания (из-за наличия водяного пара).
Зольность - это количество золы, образующейся при сгорании минеральных веществ, содержащихся в топливе. Минеральные вещества, содержащиеся в топливе, понижают его теплоту сгорания, так как уменьшается содержание горючих компонентов (основная причина) и увеличивается расход тепла на нагрев и плавление минеральной массы.
Сернистость (содержание серы) относится к отрицательному фактору топлива, так как при его сгорании образуются сернистые газы, загрязняющие атмосферу и разрушающие металл. Кроме того, сера, содержащаяся в топливе, частично переходит в выплавляемый металл, сваренную стекломассу, снижая их качество. Например, для варки хрустальных, оптических и других стёкол нельзя использовать топливо, содержащее серу, так как сера значительно понижает оптические свойства и колер стекла.

Известно, что источником энергии, которая используется в промышленности, на транспорте, в сельском хозяйстве, в быту, является топливо. Это уголь, нефть, торф, дрова, природный газ и др. При сгорании топлива выделяется энергия. Попытаемся выяснить, за счёт чего выделяется при этом энергия.

Вспомним строение молекулы воды (рис. 16, а). Она состоит из одного атома кислорода и двух атомов водорода. Если молекулу воды разделить на атомы, то при этом необходимо преодолеть силы притяжения между атомами, т. е. совершить работу, а значит, затратить энергию. И наоборот, если атомы соединяются в молекулу, энергия выделяется.

Использование топлива основано как раз на явлении выделения энергии при соединении атомов. Так, например, атомы углерода, содержащиеся в топливе, при горении соединяются с двумя атомами кислорода (рис. 16, б). При этом образуется молекула оксида углерода - углекислого газа - и выделяется энергия.

Рис. 16. Строение молекул:
a - воды; б - соединение атома углерода и двух атомов кислорода в молекулу углекислого газа

При расчёте двигателей инженеру необходимо точно знать, какое количество теплоты может выделить сжигаемое топливо. Для этого надо опытным путём определить, какое количество теплоты выделится при полном сгорании одной и той же массы топлива разных видов.

    Физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг, называется удельной теплотой сгорания топлива.

Удельная теплота сгорания обозначается буквой q. Единицей удельной теплоты сгорания является 1 Дж / кг.

Удельную теплоту сгорания определяют на опыте с помощью довольно сложных приборов.

Результаты опытных данных приведены в таблице 2.

Таблица 2

Из этой таблицы видно, что удельная теплота сгорания, например, бензина 4,6 10 7 Дж / кг.

Это значит, что при полном сгорании бензина массой 1 кг выделяется 4,6 10 7 Дж энергии.

Общее количество теплоты Q, выделяемое при сгорании m кг топлива, вычисляется по формуле

Вопросы

  1. Что такое удельная теплота сгорания топлива?
  2. В каких единицах измеряют удельную теплоту сгорания топлива?
  3. Что означает выражение «удельная теплота сгорания топлива равна 1,4 10 7 Дж / кг? Как вычисляют количество теплоты, выделяемое при сгорании топлива?

Упражнение 9

  1. Какое количество теплоты выделяется при полном сгорании древесного угля массой 15 кг; спирта массой 200 г?
  2. Сколько теплоты выделится при полном сгорании нефти, масса которой 2,5 т; керосина, объём которого равен 2 л, а плотность 800 кг / м 3 ?
  3. При полном сгорании сухих дров выделилось 50 000 кДж энергии. Какая масса дров сгорела?

Задание

Используя таблицу 2, постройте столбчатую диаграмму для удельной теплоты сгорания дров, спирта, нефти, водорода, выбрав масштаб следующим образом: ширина прямоугольника - 1 клетка, высота 2 мм соответствует 10 Дж.

5.ТЕПЛОВОЙ БАЛАНС ГОРЕНИЯ

Рассмотрим методы расчета теплового баланса процесса горения газообразных, жидких и твердых топлив. Расчет сводится к решению следующих задач.

· Определение теплоты горения (теплотворной способности) топлива.

· Определение теоретической температуры горения.

5.1. ТЕПЛОТА ГОРЕНИЯ

Химические реакции сопровождаются выделением или поглощением теплоты. При выделении теплоты реакция называется экзотермической, а при поглощении – эндотермической. Все реакции горения являются экзотермическими, а продукты горения относятся к экзотермическим соединениям.

Выделяемая (или поглощаемая) при протекании химической реакции теплота называется теплотой реакции. В экзотермических реакциях она положительна, в эндотермических – отрицательна. Реакция горения всегда сопровождается выделением теплоты. Теплотой горения Q г (Дж/моль) называется количество теплоты, которое выделяется при полном сгорании одного моля вещества и превращении горючего вещества в продукты полного горения. Моль является основной единицей количества вещества в системе СИ. Один моль – это такое количество вещества, в котором находится столько же частиц (атомов, молекул и т.д.), сколько содержится атомов в 12 г изотопа углерода–12. Масса количества вещества, равного 1 молю (молекулярная или молярная масса) численно совпадает с относительной молекулярной массой данного вещества.

Например, относительная молекулярная масса кислорода (O 2) равна 32, углекислого газа (CO 2) равна 44, а соответствующие молекулярные массы будут равны M =32 г/моль и M =44 г/моль. Таким образом, в одном моле кислорода содержится 32 грамма этого вещества, а в одном моле CO 2 содержится 44 грамма углекислого газа.

В технических расчетах чаще используется не теплота горения Q г , а теплотворная способность топлива Q (Дж/кг или Дж/м 3). Теплотворной способностью вещества называется количество теплоты, которое выделяется при полном сгорании 1 кг или 1 м 3 вещества. Для жидких и твердых веществ расчет проводится на 1 кг, а для газообразных – на 1 м 3 .

Знание теплоты горения и теплотворной способности топлива необходимо для расчета температуры горения или взрыва, давления при взрыве, скорости распространения пламени и других характеристик. Теплотворная способность топлива определяется либо экспериментальным, либо расчетным способами. При экспериментальном определении теплотворной способности заданная масса твердого или жидкого топлива сжигается в калориметрической бомбе, а в случае газообразного топлива – в газовом калориметре. С помощью этих приборов измеряется суммарная теплота Q 0 , выделяющаяся при сгорании навески топлива массой m . Величина теплотворной способности Q г находится по формуле

Связь между теплотой горения и
теплотворной способностью топлива

Для установления связи между теплотой горения и теплотворной способностью вещества необходимо записать уравнение химической реакции горения.

Продуктом полного горения углерода является диоксид углерода:

С+О 2 →СО 2 .

Продуктом полного горения водорода является вода:

2Н 2 +О 2 →2Н 2 О.

Продуктом полного горения серы является диоксид серы:

S +О 2 →SO 2 .

При этом выделяются в свободном виде азот, галоиды и другие негорючие элементы.

Горючее вещество – газ

В качестве примера проведем расчет теплотворной способности метана CH 4 , для которого теплота горения равна Q г =882.6 .

· Определим молекулярную массу метана в соответствии с его химической формулой (СН 4):

М=1∙12+4∙1=16 г/моль.

· Определим теплотворную способность 1 кг метана:

· Найдем объем 1 кг метана, зная его плотность ρ=0.717 кг/м 3 при нормальных условиях:

.

· Определим теплотворную способность 1 м 3 метана:

Аналогично определяется теплотворная способность любых горючих газов. Для многих распространенных веществ значения теплоты горения и теплотворной способности были измерены с высокой точностью и приведены в соответствующей справочной литературе. Приведем таблицу значений теплотворной способности некоторых газообразных веществ (табл. 5.1). Величина Q в этой таблице приведена в МДж/м 3 и в ккал/м 3 , поскольку часто в качестве единицы теплоты используется 1 ккал = 4.1868 кДж.

Таблица 5.1

Теплотворная способность газообразных топлив

Вещество

Ацетилен

Q

Горючее вещество – жидкость или твердое тело

В качестве примера проведем расчет теплотворной способности этилового спирта С 2 Н 5 ОН, для которого теплота горения Q г = 1373.3 кДж/моль.

· Определим молекулярную массу этилового спирта в соответствии с его химической формулой (С 2 Н 5 ОН):

М = 2∙12 + 5∙1 + 1∙16 + 1∙1 = 46 г/моль.

· Определим теплотворную способность 1 кг этилового спирта:

Аналогично определяется теплотворная способность любых жидких и твердых горючих. В табл. 5.2 и 5.3 приведены значения теплотворной способности Q (МДж/кг и ккал/кг) для некоторых жидких и твердых веществ.

Таблица 5.2

Теплотворная способность жидких топлив

Вещество

Метиловый спирт

Этиловый спирт

Мазут, нефть

Q

Таблица 5.3

Теплотворная способность твердых топлив

Вещество

Дерево свежее

Дерево сухое

Бурый уголь

Торф сухой

Антрацит, кокс

Q

Формула Менделеева

Если теплотворная способность топлива неизвестна, то ее можно рассчитать с помощью эмпирической формулы, предложенной Д.И. Менделеевым. Для этого необходимо знать элементарный состав топлива (эквивалентную формулу топлива), то есть процентное содержание в нем следующих элементов:

Кислорода (О);

Водорода (Н);

Углерода (С);

Серы (S );

Золы (А);

Воды (W ).

В продуктах сгорания топлив всегда содержатся пары воды, образующиеся как из-за наличия влаги в топливе, так и при сгорании водорода. Отработанные продукты сгорания покидают промышленную установку при температуре выше температуры точки росы. Поэтому тепло, которое выделяется при конденсации водяных паров, не может быть полезно использовано и не должно учитываться при тепловых расчетах.

Для расчета обычно применяется низшая теплотворная способность Q н топлива, которая учитывает тепловые потери с парами воды. Для твердых и жидких топлив величина Q н (МДж/кг) приближенно определяется по формуле Менделеева:

Q н =0.339+1.025+0.1085 – 0.1085 – 0.025, (5.1)

где в скобках указано процентное (масс. %) содержание соответствующих элементов в составе топлива.

В этой формуле учитывается теплота экзотермических реакций горения углерода, водорода и серы (со знаком «плюс»). Кислород, входящий в состав топлива, частично замещает кислород воздуха, поэтому соответствующий член в формуле (5.1) берется со знаком «минус». При испарении влаги теплота расходуется, поэтому соответствующий член, содержащий W , берется также со знаком «минус».

Сравнение расчетных и опытных данных по теплотворной способности разных топлив (дерево, торф, уголь, нефть) показало, что расчет по формуле Менделеева (5.1) дает погрешность, не превышающую 10%.

Низшая теплотворная способность Q н (МДж/м 3) сухих горючих газов с достаточной точностью может быть рассчитана как сумма произведений теплотворной способности отдельных компонентов и их процентного содержания в 1 м 3 газообразного топлива.

Q н = 0.108[Н 2 ] + 0.126[СО] + 0.358[СН 4 ] + 0.5[С 2 Н 2 ] + 0.234[Н 2 S ]…, (5.2)

где в скобках указано процентное (объем. %) содержание соответствующих газов в составе смеси.

В среднем теплотворная способность природного газа составляет примерно 53.6 МДж/м 3 . В искусственно получаемых горючих газах содержание метана СН 4 незначительно. Основными горючими составляющими являются водород Н 2 и оксид углерода СО. В коксовальном газе, например, содержание Н 2 доходит до (55 ÷ 60)%, а низшая теплотворная способность такого газа достигает 17.6 МДж/м 3 . В генераторном газе содержание СО ~ 30% и Н 2 ~15%, при этом низшая теплотворная способность генераторного газа Q н = (5.2÷6.5) МДж/м 3 . В доменном газе содержание СО и Н 2 меньше; величина Q н = (4.0÷4.2) МДж/м 3 .

Рассмотрим примеры расчета теплотворной способности веществ по формуле Менделеева.

Определим теплотворную способность угля, элементный состав которого приведен в табл. 5.4.

Таблица 5.4

Элементный состав угля

· Подставим приведенные в табл. 5.4 данные в формулу Менделеева (5.1) (азот N и зола A в эту формулу не входят, поскольку являются инертными веществами и не участвуют в реакции горения):

Q н =0.339∙37.2+1.025∙2.6+0.1085∙0.6–0.1085∙12–0.025∙40=13.04 МДж/кг.

Определим количество дров, необходимое для нагрева 50 литров воды от 10° С до 100° С, если на нагревание расходуется 5% теплоты, выделяемой при горении, а теплоемкость воды с =1 ккал/(кг∙град) или 4.1868 кДж/(кг∙град). Элементный состав дров приведен в табл. 5.5:

Таблица 5.5

Элементный состав дров

· Найдем теплотворную способность дров по формуле Менделеева (5.1):

Q н =0.339∙43+1.025∙7–0.1085∙41–0.025∙7= 17.12 МДж/кг.

· Определим количество теплоты, расходуемое на нагрев воды, при сгорании 1 кг дров (с учетом того, что на ее нагрев расходуется 5% теплоты (a =0.05), выделяемой при горении):

Q 2 =a Q н =0.05·17.12=0.86 МДж/кг.

· Определим количество дров, необходимое для нагрева 50 литров воды от 10° С до 100° С:

кг.

Таким образом, для нагрева воды требуется около 22 кг дров.

Достаточно часто в учет принимается теплотворная способность топлива при выборе отопительных приборов для домов и дач, при выборе систем отопления для квартиры. Данный параметр важен и при выборе топливных систем для автомобилей (при переходе с жидкого топлива на газ или электричество).

Стоит отметить, что на данный момент многие научные организации, научно-исследовательские институты, лаборатории и даже специализированные компании занимаются разработкой систем, которые способны повысить данный параметр и позволят более оптимально использовать выделяемую при сгорании энергию. Обычно это достигается путем повышения коэффициента полезного действия установки.

Наличие подобного параметра связано с тем, что разные типы выделяют разное количество теплоты (энергии) в процессе сгорания, что особенно актуально для промышленных установок и котельных, поскольку подбор оптимального вида позволит сэкономить значительное количество финансовых средств на работе промышленных установок.

Ниже будет приведено определение теплотворной способности топлива, будет рассмотрено, что такое удельная теплота сгорания топлива и приведены значения некоторых энергоресурсов (удельная теплота сгорания дров, угля, нефтепродуктов).

Под теплотворной способностью различных видов энергоресурсов понимают то, какое количество тепловой энергии (килокалории) будет на выходе при сгорании одной единицы топливного материала. Для определения данного параметра используется специальный прибор, который называют калориметром. Есть и другое приспособление — калориметрическая бомба.

В измерительных приборах одной единицей топливного материала нагревают воду, в результате чего получают водяной пар. Далее пар конденсируется, переходя полностью в жидкое состояние, что называют конденсацией. При этом пар полностью отдает тепловую энергию измерительному прибору. Однако недостатком таких измерительных приборов является то, что тепловая энергия, которая выходит при сгорании топлива, измеряется не вся. Это связано с тем, что при парообразовании количество тепловой энергии больше, чем при конденсации. Это делает невозможным измерить всю выделяемую энергию. К недостаткам приборов стоит отнести и не идеальную теплопроводность материалов, из которых они изготавливаются, что тоже снижает реальный показатель сгорания. Данные критерии достаточно важны для лабораторных исследований, однако при измерениях для практических целей ими пренебрегают. При работе промышленных установок эти потери увеличиваются за счет КПД (не 100%).

При этом показатели, которые получились в калориметрической бомбе (где процесс измерения точнее, чем в калориметре), называются высшим значением теплотворной способности топливного материала.

Показатели калориметра — низшая теплота сгорания топлива, которая отличается от высшей значением 600х(9Н+W)/100, где Н и W — количество содержащегося водорода и влаги в единице конкретного топливного материала. Следует помнить, что по американским стандартам для расчетов применяется высшее значения, а для стран с метрической системой — низшее. На данный момент стоит вопрос о переходе метрической системы на высший показатель, поскольку он рядом ученых признан более оптимальным.

Значения для разных видов топливного материала

Часто многих людей интересует значение удельной теплоты сгорания топлива для того или иного вида энергоносителя, при этом довольно часто людей интересует теплотворная способность дров. Особенно актуально это стало в последнее время, когда пошла мода на классические печи в домах. Теплотворная способность дров у разных пород древесины разная, достаточно часто приводится усредненное значение. Ниже приведем значения для следующих видов топливного материала:

  1. Теплотворная способность дров (березовых, хвойных) составляет в среднем 14,5-15,5 МДж/кг. Такой же показатель теплоотдачи имеет и бурый уголь.
  2. Теплоотдача каменного угля составляет 22 МДж/кг.
  3. Данное значение для торфа колеблется в пределах 8-15 МДж/кг.
  4. Значение для топливных брикетов находится в пределах 18,5-21 МДж/кг.
  5. Газ, который подается в жилые дома, имеет показатель 45,5 МДж/кг.
  6. Для баллонного газа (пропан-бутана) показатель составляет 36 МДж/кг.
  7. Дизельное топливо имеет показатель 42,8 МДж/кг.
  8. Для разных марок бензина значение колеблется в пределах 42-45 МДж/кг.

Удельные значения

Для ряда топливного материала подсчитаны удельные значения сгорания. Это физические величины, которые показывают количество тепловой энергии, образующееся в результате сгорания одной единицы. Обычно измеряется в джоулях на килограмм (либо метр кубический). В США значения приводятся в калориях на килограмм. Данные коэффициенты — это теплоотдача. Их измеряют лабораторно, после чего данные заносятся в специальные таблицы, которые общедоступны. Чем выше теплоотдача энергоресурса (тепло, которое дает сгорание топлива), тем более эффективным считается топливо. То есть в одной и той же установке с одним КПД расход будет меньшим у того топлива, которое имеет более высокое значение теплоотдачи.

Удельная теплота сгорания топлива практически всегда используется при конструкторских расчетах (при проектировании различного оборудования), а также при определении отопительных систем и оборудования для дома, квартиры, дачи и т.д.

Тепловые машины в термодинамике — это периодически действующие тепловые двигатели и холодильные машины (термокомпрессоры). Разновидностью холодильных машин являются тепловые насосы.

Устройства, совершающие механическую работу за счёт внутренней энергии топлива, называются тепловыми машинами (тепловыми двигателями). Для функционирования тепловой машины необходимы следующие составляющие: 1) источник тепла с более высоким температурным уровнем t1, 2) источник тепла с более низким температурным уровнем t2, 3) рабочее тело. Иначе сказать: любые тепловые машины (тепловые двигатели) состоят из нагревателя, холодильника и рабочего тела .

В качестве рабочего тела используются газ или пар, поскольку они хорошо сжимаются, и в зависимости от типа двигателя может быть топливо (бензин, керосин), водяной пар и пр. Нагреватель передаёт рабочему телу некоторое количество теплоты (Q1), и его внутренняя энергия увеличивается, за счёт этой внутренней энергии совершается механическая работа (А), затем рабочее тело отдаёт некоторое количество теплоты холодильнику (Q2) и охлаждается при этом до начальной температуры. Описанная схема представляет цикл работы двигателя и является общей, в реальных двигателях роль нагревателя и холодильника могут выполнять различные устройства. Холодильником может служить окружающая среда.

Поскольку в двигателе часть энергии рабочего тела передается холодильнику, то понятно, что не вся полученная им от нагревателя энергия идет на совершение работы. Соответственно, коэффициент полезного действия двигателя (КПД) равен отношению совершенной работы (А) к количеству теплоты, полученному им от нагревателя (Q1):

Двигатель внутреннего сгорания (ДВС)

Существует два типа двигателей внутреннего сгорания (ДВС): карбюраторный и дизельный . В карбюраторном двигателе рабочая смесь (смесь топлива с воздухом) готовится вне двигателя в специальном устройстве и из него поступает в двигатель. В дизельном двигателе горючая смесь готовится в самом двигателе.

ДВС состоит из цилиндра , в котором перемещается поршень ; в цилиндре имеются два клапана , через один из которых горючая смесь впускается в цилиндр, а через другой отработавшие газы выпускаются из цилиндра. Поршень с помощью кривошипно-шатунного механизма соединяется с коленчатым валом , который приходит во вращение при поступательном движении поршня. Цилиндр закрыт крышкой.

Цикл работы ДВС включает четыре такта : впуск, сжатие, рабочий ход, выпуск. Во время впуска поршень движется вниз, давление в цилиндре уменьшается, и в него через клапан поступает горючая смесь (в карбюраторном двигателе) или воздух (в дизельном двигателе). Клапан в это время закрыт. В конце впуска горючей смеси закрывается клапан.

Во время второго такта поршень движется вверх, клапаны закрыты, и рабочая смесь или воздух сжимаются. При этом температура газа повышается: горючая смесь в карбюраторном двигателе нагревается до 300- 350 °С, а воздух в дизельном двигателе - до 500-600 °С. В конце такта сжатия в карбюраторном двигателе проскакивает искра, и горючая смесь воспламеняется. В дизельном двигателе в цилиндр впрыскивается топливо, и образовавшаяся смесь самовоспламеняется.

При сгорании горючей смеси газ расширяется и толкает поршень и соединенный с ним коленчатый вал, совершая механическую работу. Это приводит к тому, что газ охлаждается.

Когда поршень придёт в нижнюю точку, давление в нём уменьшится. При движении поршня вверх открывается клапан, и происходит выпуск отработавшего газа. В конце этого такта клапан закрывается.


Паровая турбина

Паровая турбина представляет собой насаженный на вал диск, на котором укреплены лопасти. На лопасти поступает пар. Пар, нагретый до 600 °С, направляется в сопло и в нём расширяется. При расширении пара происходит превращение его внутренней энергии в кинетическую энергию направленного движения струи пара. Струя пара поступает из сопла на лопасти турбины и передаёт им часть своей кинетической энергии, приводя турбину во вращение. Обычно турбины имеют несколько дисков, каждому из которых передаётся часть энергии пара. Вращение диска передаётся валу, с которым соединён генератор электрического тока.

При сгорании различного топлива одинаковой массы выделяется разное количество теплоты. Например, хорошо известно, что природный газ является энергетически более выгодным топливом, чем дрова. Это значит, что для получения одного и того же количества теплоты, масса дров, которые нужно сжечь, должна быть существенно больше массы природного газа. Следовательно, различные виды топлива с энергетической точки зрения характеризуются величиной, называемой удельной теплотой сгорания топлива .

Удельная теплота сгорания топлива - физическая величина, показывающая, какое количество теплоты выделяется при полном сгорании топлива массой 1 кг.

← Вернуться

×
Вступай в сообщество «passport13.com»!
ВКонтакте:
Я уже подписан на сообщество «passport13.com»