Работа силы в системе си измеряется. Механическая работа

Подписаться
Вступай в сообщество «passport13.com»!
ВКонтакте:

1.5. МЕХАНИЧЕСКАЯ РАБОТА И КИНЕТИЧЕСКАЯ ЭНЕРГИЯ

Понятие энергии. Механическая энергия. Работа - количественная мера изменения энергии. Работа равнодействующей сил. Работа сил в механике. Понятие мощности. Кинетическая энергия как мера механического движения. Связь изменения ки нетической энергии с работой внутренних и внешних сил. Кинетическая энергия системы в различных системах отсчета. Теорема Кенига.

Энергия - это универсальная мера различных форм движения и взаимодействия. Механи́ческая эне́ргия описывает сумму потенциальной и кинетической энергии , имеющихся в компонентах механической системы . Механическая энергия - это энергия, связанная с движением объекта или его положением, способность совершать механическую работу.

Работа силы - это количественная характеристика процесса обмена энергией между взаимодействующими телами.

Пусть частица под действием силы совершает перемещение по некоторой траектории 1-2 (рис. 5.1). В общем случае сила в процессе

движения частицы может изменяться как по модулю, так и по направлению. Рассмотрим, как показано на рис.5.1, элементарное перемещение , в пределах которого силу можно считать постоянной.

Действие силы на перемещении характеризуют величиной, равной скалярному произведению , которую называют элементарной работой силы на перемещении . Ее можно представить и в другом виде:

,

где - угол между векторами и - элементарный путь, проекция вектора на векторобозначена (рис. 5.1).

Итак, элементарная работа силы на перемещении

.

Величина - алгебраическая: в зависимости от угла между векторами силы и или от знака проекции вектора силы на вектор перемещения она может быть как положительной, так и отрицательной и, в частности, равной нулю, если т.е. . Единицей измерения работы в вивтеме СИ служит Джоуль, сокращенное обозначение Дж.

Суммируя (интегрируя) выражение (5.1) по всем элементарным участкам пути от точки 1 до точки 2, найдем работу силы на данном перемещении:

видно, что элементарная работа A численно равна площади заштрихованной полоски, а работа А на пути от точки 1 до точки 2 - площади фигуры, ограниченной кривой, ординатами 1 и 2 и осью s. При этом площадь фигуры над осью s берется со знаком плюс (она соответствует положительной работе), а площадь фигуры под осью s - со знаком минус (она соответствует отрицательной работе).

Рассмотрим примеры на вычисление работы. Работа упругой силы где - радиус-вектор частицы А относительно точки О (рис. 5.3).

Переместим частицу A, на которую действует эта сила, по произвольному пути из точки 1 в точку 2. Найдем сначала элементарную работу силы на элементарном перемещении :

.

Скалярное произведение где проекция вектора перемещения на вектор . Эта проекция равна приращению модуля вектора Поэтому и

Теперь вычислим работу данной силы на всем пути, т. е. проинтегрируем последнее выражение от точки 1 до точки 2:

Вычислим работу гравитационной (или аналогичной ей математически силы кулоновской) силы. Пусть в начале вектора (рис. 5.3) находится неподвижная точечная масса (точечный заряд). Определим работу гравитационной (кулоновской) силы при перемещении частицы А из точки 1 в точку 2 по произвольному пути. Сила, действующая на частицу А, может быть представлена так:

где параметр для гравитационного взаимодействия равен , а для кулоновского взаимодействия его значение равно . Вычислим сначала элементарную работу этой силы на перемещении

Как и в предыдущем случае, скалярное произведение поэтому

.

Работа же этой силы на всем пути от точки 1 до точки 2

Рассмотрим теперь работу однородной силы тяжести . Запишем эту силу в виде где орт вертикальной оси z с положительным направлением обозначен (рис.5.4). Элементарная работа силы тяжести на перемещении

Скалярное произведение гдепроекция на орт равная - приращению координаты z. Поэтому выражение для работы приобретает вид

Работа же данной силы на всем пути от точки 1 до точки 2

Рассмотренные силы интересны в том отношении, что их работа, как видно из формул (5.3) - (5.5), не зависит от формы пути между точками 1 и 2, а зависит только от положения этих точек. Эта весьма важная особенность данных сил присуща, однако, не всем силам. Например, сила трения этим свойством не обладает: работа этой силы зависит не только от положения начальной и конечной точек, но и от формы пути между ними.

До сих пор речь шла о работе одной силы. Если же на частицу в процессе движения действуют несколько сил, результирующая которых то нетрудно показать, что работа результирующей силы на некотором перемещении равна алгебраической сумме работ, совершаемых каждой из сил в отдельности на том же перемещении. Действительно,

Введем в рассмотрение новую величину - мощность. Она используется для характеристики скорости, с которой совершается работа. Мощность , по определению, - это работа, совершаемая силой за единицу времени . Если за промежуток времени сила совершает работу , то мощность, развиваемая этой силой в данный момент времени, есть Учитывая, что , получим

Единица мощности в системе СИ - Ватт, сокращенное обозначение Вт.

Таким образом, мощность, развиваемая силой , равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения данной силы. Как и работа, мощность - величина алгебраическая.

Зная мощность силы , можно найти и работу, которую совершает эта сила за промежуток времени t. В самом деле, представив подынтегральное выражение в (5.2) в виде получим

Следует также обратить внимание на одно весьма существенное обстоятельство. Когда говорят о работе (или мощности), то необходимо в каждом конкретном случае четко указывать или представлять себе, работа какой именно силы (или сил) имеется в виду. В ином случае, как правило, неизбежны недоразумения.

Рассмотрим понятие кинетической энергии частицы . Пусть частица массы т движется под действием некоторой силы (в общем случае эта сила может быть результирующей нескольких сил). Найдем элементарную работу, которую совершает эта сила на элементарном перемещении . Имея в виду, что и , запишем

.

Скалярное произведение где проекция вектора на направление вектора . Эта проекция равна - приращению модуля вектора скорости. Поэтому и элементарная работа

Отсюда видно, что работа результирующей силы идет на приращение некоторой величины стоящей в скобках, которую называют кинетической энергией частицы.

а при конечном перемещении из точки 1 в точку 2

(5. 10 )

т. е. приращение кинетической энергии частицы на некотором перемещении равно алгебраической сумме работ всех сил , действующих на частицу на том же перемещении. Если то т. е. кинетическая энергия частицы увеличивается; если же то то есть кинетическая энергия уменьшается.

Уравнение (5.9) можно представить и в другой форме, поделив обе части его на соответствующий промежуток времени dt:

(5. 11 )

Это значит, что производная кинетической энергии частицы по времени равна мощности N результирующей силы, действующей на частицу.

Теперь введем понятие кинетической энергии системы . Рассмотрим в некоторой системе отсчета произвольную систему частиц. Пусть частица системы имеет в данный момент кинетическую энергию . Приращение кинетической энергии каждой частицы равно, согласно (5.9), работе всех сил, действующих на эту частицу: Найдем элементарную работу, которую совершают все силы, действующие на все частицы системы:

где - суммарная кинетическая энергия системы. Заметим, что кинетическая энергия системы - величина аддитивная : она равна сумме кинетических энергий отдельных частей системы независимо от того, взаимодействуют они между собой или нет.

Итак, приращение кинетической энергии системы равно работе, которую совершают все силы, действующие на все частицы системы . При элементарном перемещении всех частиц

(5.1 2 )

а при конечном перемещении

т. е. производная кинетической энергии системы по времени равна суммарной мощности всех сил, действующих на все частицы системы ,

Теорема Кенига: кинетическую энергию K системы частиц можно представить как сумму двух слагаемых: а) кинетической энергии mV c 2 /2 воображаемой материальной точки, масса которой равна массе всей системы, а скорость совпадает со скоростью центра масс; б) кинетической энергии K отн системы частиц, вычисленной в системе центра масс.

А что это значит?

В физике "механической работой" называют работу какой-нибудь силы (силы тяжести, упругости, трения и т.д.) над телом, в результате действия которой тело перемещается.

Часто слово "механическая" просто не пишется.
Иногда можно встретить выражение " тело совершило работу", что в принципе означает "сила, действующая на тело, совершила работу".

Я думаю - я работаю.

Я иду - я тоже работаю.

Где же здесь механическая работа?

Если под действием силы тело перемещается, то совершается механическая работа.

Говорят, что тело совершает работу.
А точнее будет так: работу совершает сила, действующая на тело.

Работа характеризует результат действия силы.

Cилы, действующие на человека совершают над ним механическую работу, а в результате действия этих сил человек перемещается.

Работа - физическая величина, равная произведению силы, действующей на тело, на путь, совершенный телом под действием силы в направлении этой силы.

А - механическая работа,
F - сила,
S - пройденный путь.

Работа совершается , если соблюдаются одновременно 2 условия: на тело действует сила и оно
перемещается в направлении действия силы.

Работа не совершается (т.е. равна 0),если:
1. Сила действует, а тело не перемещается.

Например: мы действуем с силой на камень, но не можем его сдвинуть.

2. Тело перемещается, а сила равна нулю, или все силы скомпенсированы (т.е. равнодействующая этих сил равна 0).
Например: при движении по инерции работа не совершается.
3. Направление действия силы и направление движения тела взаимно перпендикулярны.

Например: при движении поезда по горизонтали сила тяжести работу не совершает.

Работа может быть положительной и отрицательной

1. Если направление силы и направление движения тела совпадают, совершается положительная работа.

Например: сила тяжести, действуя на падающую вниз каплю воды, совершает положительную работу.

2. Если направление силы и движения тела противоположны, совершается отрицательная работа.

Например: сила тяжести, действующая на поднимающийся воздушный шарик, совершает отрицательную работу.

Если на тело действует несколько сил, то полная работа всех сил равна работе результирующей силы.

Единицы работы

В честь английского ученого Д.Джоуля единица измерения работы получила название 1 Джоуль.

В международной системе единиц (СИ):
[А] = Дж = Н м
1Дж = 1Н 1м

Механическая работа равна 1 Дж, если под действием силы в 1 Н тело перемещается на 1 м в направлении действия этой силы.


При перелете с большого пальца руки человека на указательный
комар совершает работу - 0, 000 000 000 000 000 000 000 000 001 Дж.

Сердце человека за одно сокращение совершает приблизительно 1 Дж работы, что соответствует работе, совершенной при поднятии груза массой 10 кг на высоту 1 см.

ЗА РАБОТУ, ДРУЗЬЯ!

Механическая работа это энергетическая характеристика движения физических тел, имеющая скалярный вид. Она равна модулю силы действующей на тело, умноженной на модуль перемещения вызванного этой силой и на косинус угла между ними.

Формула 1 - Механическая работа.


F - Сила, действующая на тело.

s - Перемещение тела.

cosa - Косинус угла между силой и перемещением.

Данная формула имеет общий вид. В случае если угол между прикладываемой силой и перемещением равен нулю, то косинус равен 1. Соответственно работа будет равна только произведению силы на перемещение. Проще говоря, если тело движется в направлении приложения силы, то механическая работа равна произведению силы на перемещение.

Второй частный случай, когда угол между силой, действующей на тело и его перемещением равен 90 градусов. В этом случае косинус 90 градусов равен нулю, соответственно работа будет равна нулю. И действительно, что происходит мы, прикладываем силу в одном направлении, а тело движется перпендикулярно ему. То есть тело движется явно не под действием нашей силы. Таким образом, работа нашей силы по перемещению тела равна нулю.

Рисунок 1 - Работа сил при перемещении тела.


В случае если на тело действует больше одной силы, то рассчитывают суммарную силу, действующую на тело. И далее ее подставляют в формулу как единственную силу. Тело под действием силы может перемещаться не только прямолинейно, но и по произвольной траектории. В этом случае работа вычисляется для малого участка перемещения, который можно считать прямолинейным и далее суммируется по всему пути.

Работа может быть как положительной, так и отрицательной. То есть если перемещение и сила совпадают по направлению, то работа положительна. А если сила приложена в одном направлении, а тело перемещается в другом, то работа будет отрицательна. Примером отрицательной работы может служить работа силы трения. Так как сила трения направлена встречно движению. Представьте себе, тело движется по плоскости. Сила, приложенная к телу, толкает его в определенном направлении. Эта сила совершает положительную работу по перемещению тела. Но при этом сила трения совершает отрицательную работу. Она тормозит перемещение тела и направлена навстречу его движению.

Рисунок 2 - Сила движения и трения.


Работа в механике измеряется в Джоулях. Один Джоуль это работа совершаемая силой в один Ньютон при перемещении тела на один метр. Кроме направления движения тела может меняться и величина прилагаемой силы. К примеру, при сжатии пружины, сила прилагаемой к ней будет увеличиваться пропорционально пройденному расстоянию. В этом случае работу вычисляют по формуле.

Формула 2 - Работа сжатия пружины.


k - жесткость пружины.

x - координата перемещения.

В нашем повседневном опыте слово «работа» встречается очень часто. Но следует различать работу физиологическую и работу с точки зрения науки физики. Когда вы приходите с уроков, вы говорите: «Ой, как я устал!». Это работа физиологическая. Или, к примеру, работа коллектива в народной сказке «Репка».

Рис 1. Работа в повседневном смысле слова

Мы же будем говорить здесь о работе с точки зрения физики.

Механическая работа совершается, если под действием силы происходит перемещение тела. Работа обозначается латинской буквой А. Более строго определение работы звучит так.

Работой силы называется физическая величина, равная произведению величины силы на расстояние, пройденное телом в направлении действия силы.

Рис 2. Работа - это физическая величина

Формула справедлива, когда на тело действует постоянная сила.

В международной системе единиц СИ работа измеряется в джоулях.

Это означает, что если под действием силы в 1 ньютон тело переместилось на 1 метр, то данной силой совершена работа 1 джоуль.

Единица работы названа в честь английского ученого Джеймса Прескотта Джоуля.

Рис 3. Джеймс Прескотт Джоуль (1818 - 1889)

Из формулы для вычисления работы следует, что возможны три случая, когда работа равна нулю.

Первый случай - когда на тело действует сила, но тело не перемещается. Например, на дом действует огромная сила тяжести. Но она не совершает работы, поскольку дом неподвижен.

Второй случай - когда тело перемещается по инерции, то есть на него не действуют никакие силы. Например, космический корабль движется в межгалактическом пространстве.

Третий случай - когда на тело действует сила, перпендикулярная направлению движения тела. В этом случае, хотя и тело перемещается, и сила на него действует, но нет перемещения тела в направлении действия силы .

Рис 4. Три случая, когда работа равна нулю

Следует также сказать, что работа силы может быть отрицательной. Так будет, если перемещение тела происходит против направления действия силы . Например, когда подъемный кран с помощью троса поднимает груз над землей, работа силы тяжести отрицательна (а работа силы упругости троса, направленная вверх, наоборот, положительна).

Предположим, при выполнении строительных работ котлован необходимо засыпать песком. Экскаватору для этого понадобится несколько минут, а рабочему с помощью лопаты пришлось бы трудиться несколько часов. Но и экскаватор, и рабочий при этом выполнили бы одну и ту же работу .

Рис 5. Одну и ту же работу можно выполнить за разное время

Чтобы охарактеризовать быстроту выполнения работы в физике используется величина, называемая мощностью.

Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.

Мощность обозначается латинской буквой N .

Единицей измерения мощности я системе СИ является ватт.

Один ватт - это мощность, при которой работа в один джоуль совершается за одну секунду.

Единица мощности названа в честь английского ученого, изобретателя паровой машины Джеймса Уатта.

Рис 6. Джеймс Уатт (1736 - 1819)

Объединим формулу для вычисления работы с формулой для вычисления мощности.

Вспомним теперь, что отношение пути, пройденного телом, S , ко времени движения t представляет собой скорость движения тела v .

Таким образом, мощность равна произведению численного значения силы на скорость движения тела в направлении действия силы .

Этой формулой удобно пользоваться при решении задач, в которых сила действует на тело, движущееся с известной скоростью.

Список литературы

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7-9 классов общеобразовательных учреждений. - 17-е изд. - М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. - 14-е изд., стереотип. - М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7-9 кл.: 5-е изд., стереотип. - М: Издательство «Экзамен», 2010.
  1. Интернет-портал Physics.ru ().
  2. Интернет-портал Festival.1september.ru ().
  3. Интернет-портал Fizportal.ru ().
  4. Интернет-портал Elkin52.narod.ru ().

Домашнее задание

  1. В каких случаях работа равна нулю?
  2. Как находится работа на пути, пройденном в направлении действия силы? В противоположном направлении?
  3. Какую работу совершает сила трения, действующая на кирпич, при его перемещении на 0,4 м? Сила трения равна 5 Н.

Чтобы иметь возможность охарактеризовать энергетические характеристики движения, было введено понятие механической работы. И именно ей в её разных проявлениях посвящена статья. Для понимания тема одновременно и лёгкая, и довольно сложная. Автор искренне старался сделать её более понятной и доступной для понимания, и остаётся только надеяться, что цель достигнута.

Что называют механической работой?

Что же так называют? Если над телом работает какая-то сила, и в результате действия оной тело перемещается, то это и называется механической работой. При подходе с точки зрения научной философии здесь можно выделить несколько дополнительных аспектов, но в статье будет тема раскрыта с точки зрения физики. Механическая работа - это не сложно, если хорошо вдуматься в написанные здесь слова. Но слово "механическая" обычно не пишется, и всё сокращается до слова «работа». Но не каждая работа является механической. Вот сидит человек и думает. Работает ли он? Мысленно да! Но механическая ли это работа? Нет. А если человек идёт? Если тело перемещается под действием силы, то это механическая работа. Всё просто. Иными словами, сила, действующая на тело, совершает (механическую) работу. И ещё: именно работой можно охарактеризовать результат действия определённой силы. Так ечли человек идёт, то определённые силы (трения, тяжести и т.д.) совершают над человеком механическую работу, и в результате их действия человек меняет точку своего нахождения, другими словами перемещается.

Работа как физическая величина равняется силе, что действует на тело, множимой на путь, который совершило тело под влиянием этой силы и в направлении, указываемом ею. Можно сказать, что механическая работа была сделана, если одновременно было соблюдено 2 условия: сила действовала на тело, и оно переместилось в направление её действия. Но она не совершалась или не совершается, если сила действовала, а тело не поменяло свое местонахождение в системе координат. Вот небольшие примеры, когда механическая работа не совершается:

  1. Так человек может навалиться на огромный валун с целью сдвинуть его, но сил не хватает. Сила действует на камень, а он не перемещается, и работа не происходит.
  2. Тело движется в системе координат, а сила равняется нулю или они все компенсировались. Такое можно наблюдать во время движения по инерции.
  3. Когда направление, в котором двигается тело, перпендикулярно действию силы. Когда поезд двигается по горизонтальной линии, то сила тяжести свою работу не совершает.

Зависимо от определённых условий механическая работа бывает отрицательной и положительной. Так, если направления и силы, и движения тела одинаковы, то происходит положительная работа. Примером положительной работы является действие силы тяжести на падающую каплю воды. Но если сила и направление движения противоположны, то значит происходит отрицательная механическая работа. Примером уже такого варианта является поднимающийся вверх воздушный шарик и сила тяжести, которая совершает отрицательную работу. Когда тело поддаётся влиянию нескольких сил, такая работа называется "работой результирующей силы".

Особенности практического применения (кинетическая энергия)

Переходим от теории к практической части. Отдельно следует поговорить о механической работе и её использовании в физике. Как многие наверняка вспомнили, вся энергия тела делится на кинетическую и потенциальную. Когда объект находится в положении равновесия и никуда не движется, его потенциальная энергия равняется общей энергии, а кинетическая равняется нулю. Когда начинается движение, потенциальная энергия начинает уменьшаться, кинетическая расти, но в сумме они равняются общей энергии объекта. Для материальной точки кинетическую энергию определяют как работу силы, которая ускорила точку от нуля до значения Н, а в формульном виде кинетика тела равна ½*М*Н, где М - масса. Чтобы узнать кинетическую энергию объекта, который состоит из множества частиц, необходимо найти сумму всей кинетической энергии частиц, и это будет кинетическая энергия тела.

Особенности практического применения (потенциальная энергия)

В случае, когда все действующие на тело силы консервативны, и потенциальная энергия равняется общей, то работа не совершается. Этот постулат известен как закон сохранения механической энергии. Механическая энергия в замкнутой системе является постоянной во временном интервале. Закон сохранения широко используют для решения задач из классической механики.

Особенности практического применения (термодинамика)

В термодинамике работа, которую совершает газ при расширении, рассчитывают по интегралу умножения давления на объем. Такой подход применим не только в тех случаях, когда есть точная функция объема, но и ко всем процессам, что могут быть отображены в плоскости давление/объем. Также применяется знание о механической работе не только к газам, но и ко всему, что может оказать давление.

Особенности практического применения на практике (теоретическая механика)

В теоретической механике все вышеописанные свойства и формулы рассматриваются более детально, в частности это проекции. Она даёт и свое определение для различных формул механической работы (пример определения для интеграла Риммера): предел, до которого стремится сумма всех сил элементарных работ, когда мелкость разбиения стремится к нулевому значению, называется работой силы вдоль кривой. Наверное, сложно? Но ничего, с теоретической механикой всё. Да уже и вся механическая работа, физика и другие сложности закончились. Дальше будут только примеры и заключение.

Единицы измерения механической работы

Для измерения работы в СИ используются джоули, а СГС использует эрг:

  1. 1 Дж = 1 кг·м²/с² = 1 Н·м
  2. 1 эрг = 1 г·см²/с² = 1 дин·см
  3. 1 эрг = 10 −7 Дж

Примеры механической работы

Для того чтобы разобраться окончательно с таким понятием как механическая работа, следует изучить несколько отдельных примеров, которые позволят рассмотреть её с множества, но далеко не всех сторон:

  1. Когда человек поднимает руками камень, то происходит механическая работа с помощью мускульной силы рук;
  2. Когда по рельсам едет поезд, его тянет сила тяги тягача (электровоза, тепловоза и т.д.);
  3. Если взять ружье и выстрелить из него, то благодаря силе давления, которую создадут пороховые газы, будет сделана работа: пуля перемещена вдоль ствола ружья одновременно с увеличением скорости самой пули;
  4. Механическая работа есть и тогда, когда сила трения действует на тело, заставляя его уменьшить скорость своего движения;
  5. Вышеописанный пример с шарами, когда они поднимаются в противоположную сторону относительно направления силы тяжести, тоже является примером механической работы, но кроме силы тяжести действует ещё и сила Архимеда, когда вверх поднимается всё, что легче воздуха.

Что такое мощность?

Напоследок хочется затронуть тему мощности. Работу силы, которая совершается в одну единицу времени, и называют мощностью. По сути мощность - это такая физическая величина, которая является отображением отношения работы к определённому промежутку времени, во время которого эта работа и совершалась: М=Р/В, где М - мощность, Р - работа, В - время. Единицу мощности в СИ обозначают в 1 Вт. Ватт равняется мощности, которая совершает работу в один джоуль за одну секунду: 1 Вт=1Дж\1с.

← Вернуться

×
Вступай в сообщество «passport13.com»!
ВКонтакте:
Я уже подписан на сообщество «passport13.com»