Краткая классификация и свойства частиц. Элементарная частица: что она собой представляет

Подписаться
Вступай в сообщество «passport13.com»!
ВКонтакте:

Слово атом означает «неделимый». Оно было введено греческими философами для обозначения мельчайших частиц, из которых, согласно их представлению, состоит материя.

Физики и химики девятнадцатого века приняли этот термин для обозначения самых мелких известных им частиц. Хотя мы уже давно в состоянии «расщепить» атомы и неделимое перестало быть неделимым, тем не менее термин этот сохранился. Согласно нынешнему нашему представлению, атом состоит из мельчайших частиц, называемых нами элементарными частицами . Существуют также и другие элементарные частицы, не являющиеся фактически составной частью атомов. Обычно их получают при помощи мощных циклотронов, синхротронов и других ускорителей частиц, специально сконструированных для изучения этих частиц. Они также возникают при прохождении космических лучей через атмосферу. Эти элементарные частицы распадаются спустя несколько миллионных долей секунды, а часто за еще более короткий промежуток времени после своего появления. В результате распада они либо видоизменяются, превращаясь в другие элементарные частицы, либо выделяют энергию в форме излучения.

Изучение элементарных частиц сосредоточивается на все возрастающем числе недолго живущих элементарных частицах. Хотя эта проблема имеет огромное значение, в частности, потому, что связана с самыми фундаментальными законами физики, тем не менее исследование частиц в настоящее время проводится почти в отрыве от других отраслей физики. По этой причине мы ограничимся рассмотрением лишь тех частиц, которые являются постоянными компонентами наиболее распространенных материалов, а также некоторых частиц, очень близко к ним примыкающих. Первой из элементарных частиц, открытых в конце девятнадцатого века, был электрон, ставший затем исключительно полезным слугой. В радиолампах поток электронов движется в вакууме; и именно посредством регулировки этого потока усиливаются входящие радиосигналы и превращаются в звук или шум. В телевизоре электронный луч служит в качестве пера, которое мгновенно и точно копирует на экране приемника то, что видит камера передатчика. В обоих этих случаях электроны движутся в вакууме так, чтобы по возможности ничто не мешало их движению. Еще одним полезным свойством является их способность, проходя через газ, заставлять его светиться. Таким образом, давая возможность электронам проходить через стеклянную трубку, наполненную газом под определенным давлением, мы используем это явление для получения неонового света, применяемого ночью для освещения крупных городов. А вот еще одна встреча с электронами: блеснула молния, и мириады электронов, пробиваясь через толщу воздуха, создают раскатистый звук грома.

Однако в земных условиях имеется сравнительно небольшое число электронов, могущих свободно двигаться, как это мы видели в предыдущих примерах. Большинство из них надежно связаны в атомах. Поскольку ядро атома заряжено положительно, оно притягивает к себе отрицательно заряженные электроны, заставляя их удерживаться на орбитах, находящихся сравнительно близко от ядра. Атом обычно состоит из ядра и некоторого числа электронов. Если электрон покидает атом, его, как правило, немедленно замещает другой электрон, который атомное ядро с большой силой притягивает к себе из своего ближайшего окружения.

Как же выглядит этот замечательный электрон? Никто его не видел и никогда не увидит; и тем не менее мы знаем его свойства настолько хорошо, что можем предсказать со всеми подробностями, как он будет вести себя в самых различных ситуациях. Мы знаем его массу (его «вес») и его электрический заряд. Мы знаем, что чаще всего он ведет себя так, как будто бы перед нами очень мелкая частица , в других же случаях он обнаруживает свойства волны . Исключительно абстрактная, но в то же самое время очень точная теория электрона была предложена в законченном виде несколько десятилетий тому назад английским физиком Дираком. Эта теория дает нам возможность определить, при каких обстоятельствах электрон будет, больше сходен с частицей, а при каких будет преобладать его волновой характер. Такая двойственная природа - частица и волна - затрудняет возможность дать четкую картину электрона; следовательно, теория, учитывающая обе эти концепции и тем не менее дающая законченное описание электрона, должна быть очень абстрактной. Но было бы неразумным ограничивать описание такого замечательного явления, как электрон, столь земными образами, как горошины и волны.

Одна из посылок теории Дирака об электроне заключалась в том, что должна существовать элементарная частица, обладающая такими же свойствами, как электрон, за исключением лишь того, что заряжена она положительно, а не отрицательно. И действительно, такой двойник электрона был обнаружен и назван позитроном . Он входит в состав космических лучей, а также возникает в результате распада некоторых радиоактивных веществ. В земных условиях жизнь позитрона коротка. Как только он оказывается по соседству с электроном, а случается это во всех веществах, электрон и позитрон «истребляют» друг друга; положительный электрический заряд позитрона нейтрализует отрицательный заряд электрона. Поскольку согласно теории относительности масса является формой энергии и поскольку энергия «неразрушима», энергия, представленная объединенными массами электрона и позитрона, должна быть каким-то образом сохранена. Эту задачу выполняет фотон (квант света), или обычно два фотона, которые излучаются в результате этого рокового столкновения; их энергия равна суммарной энергии электрона и позитрона.

Мы знаем также, что происходит и обратный процесс, Фотон может при определенных условиях, например, пролетая поблизости от ядра атома, сотворить «из ничего» электрон и позитрон. Для такого сотворения он должен обладать энергией, по меньшей мере равной энергии, соответствующей суммарной массе электрона и позитрона.

Стало быть, элементарные частицы не являются вечными или постоянными. И электроны и позитроны могут появляться и исчезать; однако энергия и результирующие электрические заряды сохраняются.

Исключая электрон, элементарной частицей, известной нам гораздо раньше любой другой частицы, является не позитрон, встречающийся сравнительно редко, а протон - ядро атома водорода. Как и позитрон, заряжен он положительно, но масса его примерно в две тысячи раз превосходит массу позитрона или электрона. Подобно этим частицам, протон иногда проявляем волновые свойства, однако лишь в исключительно особых условиях. То, что его волновая природа менее ярко выражена, фактически является прямым следствием обладания им гораздо большей массой. Волновая природа, характерная для всей материи, не приобретает для нас важного значения до тех пор, пока мы не начинаем работать с исключительно легкими частицами, такими, как электроны.

Протон - очень распространенная частица, Атом водорода состоит из протона, являющегося его ядром, и электрона, вращающегося вокруг него по орбите. Протон входит также в состав всех других атомных ядер.

Физики-теоретики предсказывали, что у протона, подобно электрону, имеется античастица. Открытие отрицательного протона или антипротона , обладающего теми же самыми свойствами, что и протон, но заряженного отрицательно, подтвердило это предсказание. Столкновение антипротона с протоном «истребляет» их обоих так же, как и в случае столкновения электрона и позитрона.

Другая элементарная частица, нейтрон , обладает почти такой же массой, как и протон, но электрически нейтральна (без электрического заряда вообще). Ее открытие в тридцатых годах нашего века - примерно одновременно с открытием позитрона - явилось исключительно важным для ядерной физики. Нейтрон входит в состав всех атомных ядер (за исключением, разумеется, обычного ядра атома водорода, который является просто свободным протоном); разрушаясь, атомное ядро выделяет один (или более) нейтрон. Взрыв атомной бомбы происходит благодаря нейтронам, высвобождающимся из ядер урана или плутония.

Поскольку протоны и нейтроны вместе образуют атомные ядра, и те и другие называются нуклонами, Спустя некоторое время свободный нейтрон превращается в протон и электрон.

Нам знакома еще одна частица, называемая антинейтроном , которая, подобно нейтрону, электрически нейтральна. Она обладает многими свойствами нейтрона, однако одно из коренных отличий заключается в том, что антинейтрон распадается на антипротон и электрон. Сталкиваясь, нейтрон и антинейтрон уничтожают друг друга,

Фотон , или световой квант, исключительно интересная элементарная частица. Желая почитать книгу, мы включаем электрическую лампочку. Так вот, включенная лампочка генерирует огромное количество фотонов, которые устремляются к книге, так же как и во все другие уголки комнаты, со скоростью света. Некоторые из них, ударяясь о стены, тут же погибают, другие вновь и вновь ударяются и отскакивают от стенок других предметов, однако спустя менее чем одну миллионную долю секунды с момента появления все они погибают, за исключением лишь немногих, которым удается вырваться через окно и ускользнуть в пространство. Энергия, необходимая для генерирования фотонов, поставляется электронами, протекающими через включенную лампочку; погибая, фотоны отдают эту энергию книге или другому предмету, нагревая его, или глазу, вызывая стимуляцию зрительных нервов.

Энергия фотона, а следовательно, и его масса не -остаются неизменными: существуют очень легкие фотоны наряду с очень тяжелыми. Фотоны, дающие обычный свет, очень легки, их масса составляет всего лишь несколько миллионных долей массы электрона. Другие фотоны обладают массой примерно такой же, как масса электрона, и даже гораздо большей. Примерами тяжелых фотонов являются рентгеновские и гамма-лучи.

Вот общее правило: чем легче элементарная частица, тем выразительнее ее волновая природа. Самые тяжелые элементарные частицы - протоны - выявляют сравнительно слабые волновые характеристики; несколько сильнее они у электронов; самые сильные - у фотонов. В самом деле, волновая природа света была открыта намного раньше, чем его корпускулярные характеристики. Мы знали, что свет есть не что иное, как движение электромагнитных волн, с тех пор как Максвелл Продемонстрировал это на протяжении второй половины прошлого века, но именно Планк и Эйнштейн на заре двадцатого века открыли, что свет имеет и корпускулярные характеристики, что он иногда излучается в виде отдельных «квантов», или, другими словами, в виде потока фотонов. Не приходится отрицать, что трудно объединить и слить воедино в нашем сознании эти две явно несхожие концепции природы света; но мы можем сказать, что подобно «двойственной природе» электрона наше представление о таком неуловимом явлении, каковым является свет, должно быть очень абстрактным. И только когда мы хотим выразить наше представление в грубых образах, мы должны иногда уподоблять свет потоку частиц, фотонов, или же волновому движению электромагнитной природы.

Существует зависимость между корпускулярной природой явления и его «волновыми» свойствами. Чем тяжелее частица, тем короче соответствующая ей длина волны; чем длиннее длина волны, тем легче соответствующая частица. Рентгеновские лучи, состоящие из очень тяжелых фотонов, имеют соответственно очень короткую длину волны. Красный свет, характеризующийся большей длиной волны по сравнению с синим светом, состоит из фотонов более легких по сравнению с фотонами, несущими синий свет. Самые длинные электромагнитные волны из всех существующих - радиоволны - состоят из мельчайших фотонов. Эти волны ни малейшим образом не проявляют свойств частиц, их волновая природа является целиком преобладающей характеристикой.

И наконец, самой мелкой из всех малых элементарных частиц является нейтрино . Оно лишено электрического заряда, и если у него и есть какая-либо масса, то она близка к нулю. С некоторым преувеличением мы можем сказать, что нейтрино просто лишено свойств.

Наше познание элементарных частиц является современной границей физики. Атом был открыт в девятнадцатом веке, и ученые того времени обнаружили все возрастающее число различных видов атомов; подобным же образом сегодня мы находим все больше и больше элементарных частиц. И хотя было доказано, что атомы состоят из элементарных частиц, мы не можем ожидать, что по аналогии будет, найдено, что- элементарные частицы состоят из еще более мелких частиц. Проблема, стоящая перед нами сегодня, совсем иная, и нет ни малейших признаков, указывающих на то, что мы сможем расщепить элементарные частицы. Скорее следует надеяться на то, что будет показана, что все элементарные частицы являются проявлением одного еще более фундаментального явления. И если это оказалось бы возможным установить, мы бы сумели понять все свойства элементарных частиц; смогли бы подсчитать их массы и способы их взаимодействия. Было сделано много попыток подойти к разрешению этой проблемы, являющейся одной из самых важных проблем физики.


Элементарные частицы , в узком смысле - частицы, которые нельзя считать состоящими из других частиц. В современной физике термин "элементарные частицы " используют в более широком смысле: так называют мельчайшие частицы материи, подчиненные условию, что они не являются и атомами (исключение составляет протон); иногда по этой причине элементарные частицы называют субъядерными частицами. Большая часть таких частиц (а их известно более 350) являются составными системами.

Элементарные частицы участвуют в электромагнитном, слабом, сильном и гравитационном взаимодействиях. Из-за малых масс элементарных частиц их гравитационное взаимодействие обычно не учитывается. Все элементарные частицы разделяют на три основные группы. Первую составляют так называемые бозоны - переносчики электрослабого взаимодействия. Сюда относится фотон, или квант электромагнитного излучения. Масса покоя фотона равна нулю, поэтому скорость распространения электромагнитных волн в (в т. ч. световых волн) представляет собой предельную скорость распространения физического воздействия и является одной из фундаментальных физических постоянных; принято, что с = (299792458±1,2) м/с.

Вторая группа элементарных частиц - лептоны, участвующие в электромагнитных и слабых взаимодействиях. Известно 6 лептонов: , электронное нейтрино, мюон, мюонное нейтрино, тяжелый τ-лептон и соответствующее нейтрино. Электрон (символ e) считается материальным носителем наименьшей массы в природе m e , равной 9,1×10 -28 г (в энергетических единицах ≈0,511 МэВ) и наименьшего отрицательного электрического заряда e = 1,6×10 -19 Кл. Мюоны (символ μ -) - частицы с массой около 207 масс электрона (105,7 МэВ) и электрическим зарядом, равным заряду электрона; тяжелый τ-лептон имеет массу около 1,8 ГэВ. Соответствующие этим частицам три типа нейтрино - электронное (символ ν e), мюонное (символ ν μ) и τ-нейтрино (символ ν τ) - легкие (возможно, безмассовые) электрически нейтральные частицы.

Каждому из лептонов соответствует , имеющая те же значения массы, спина и других характеристик, но отличающаяся знаком электрического заряда. Существуют (символ e +) - античастица по отношению к , положительно заряженный (символ μ +) и три типа антинейтрино (символы ), которым приписывают противоположный знак особого квантового числа, называемого лептонным зарядом (см. ниже).

Третья группа элементарных частиц - адроны, они участвуют в сильном, слабом и электромагнитном взаимодействиях. Адроны представляют собой "тяжелые" частицы с массой, значительно превышающей массу электрона. Это наиболее многочисленная группа элементарных частиц . Адроны делятся на барионы - частицы со спином ½ћ, мезоны - частицы с целочисленным спином (0 или 1); а также так называемые резонансы - короткоживущие возбужденные состояния адронов. К барионам относят протон (символ p) - ядро атома водорода с массой, в ~ 1836 раз превышающей m e и равной 1,672648×10 -24 г (≈938,3 МэВ), и положительным электрическим зарядом, равным заряду нейтрон (символ n) - электрически нейтральная частица, масса которой немного превышает массу протона. Из протонов и нейтронов построены все , именно сильное взаимодействие обусловливает связь этих частиц между собой. В сильном взаимодействии протон и нейтрон имеют одинаковые свойства и рассматриваются как два квантовых состояния одной частицы - нуклона с изотопическим спином ½ћ (см. ниже). Барионы включают и гипероны - элементарные частицы с массой больше нуклонной: Λ-гиперон имеет массу 1116 МэВ, Σ-гиперон - 1190 МэВ, Θ-гиперон - 1320 МэВ, Ω-гиперон - 1670 МэВ. Мезоны имеют массы, промежуточные между массами протона и электрона (π-мезон, K -мезон). Существуют мезоны нейтральные и заряженные (с положительным и отрицательным элементарным электрическим зарядом). Все мезоны по своим статистическим свойствам относятся к бозонам.

Основные свойства элементарных частиц

Каждая элементарная частица описывается набором дискретных значений физических величин (квантовых чисел). Общие характеристики всех элементарных частиц - масса, время жизни, спин, электрический заряд.

В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными (в пределах точности современных измерений) являются: электрон (время жизни более 5×10 21 лет), протон (более 10 31 лет), фотон и нейтрино. К квазистабильным относятся частицы, распадающиеся вследствие электромагнитного и слабого взаимодействий, их времена жизни более 10 -20 с. Резонансы распадаются за счет сильного взаимодействия, их характерные времена жизни 10 -22 - 10 -24 с.

Внутренними характеристиками (квантовыми числами) элементарных частиц являются лептонный (символ L ) и барионный (символ В )заряды; эти числа считаются строго сохраняющимися величинами для всех типов фундаментальных взаимодействий. Для лептонных и их античастиц L имеют противоположные знаки; для барионов В = 1, для соответствующих античастиц В =-1.

Для адронов характерно наличие особых квантовых чисел: "странности", "очарования", "красоты". Обычные (нестранные) адроны - протон, нейтрон, π-мезоны. Внутри разных групп адронов имеются семейства частиц, близких по массе и со сходными свойствами по отношению к сильному взаимодействию, но с различными значениями электрического заряда; простейший пример - протон и нейтрон. Общее квантовое число для таких элементарных частиц - так называемый изотопический спин, принимающий, как и обычный спин, целые и полуцелые значения. К особым характеристикам адронов относится и внутренняя четность, принимающая значения ±1.

Важное свойство элементарных частиц - их способность к взаимопревращениям в результате электромагнитных или других взаимодействий. Один из видов взаимопревращений - так называемое рождение пары, или образование одновременно частицы и античастицы (в общем случае - образование пары элементарныех частиц с противоположными лептонными или барионными зарядами). Возможны процессы рождения электрон-позитронных пар e - e + , мюонных пар μ + μ - новых тяжелых частиц при столкновениях лептонов, образование из кварков cc - и bb -состояний (см. ниже). Другой вид взаимопревращений элементарных частиц - аннигиляция пары при столкновениях частиц с образованием конечного числа фотонов (γ-квантов). Обычно образуются 2 фотона при нулевом суммарном спине сталкивающихся частиц и 3 фотона - при суммарном спине, равном 1 (проявление закона сохранения зарядовой четности).

При определенных условиях, в частности при невысокой скорости сталкивающихся частиц, возможно образование связанной системы - позитрония e - e + и мюония μ + e - . Эти нестабильные системы, часто называемые водородоподобными . Их время жизни в веществе в большой степени зависит от свойств вещества, что позволяет использовать водородоподобные атомы для изучения структуры конденсированного вещества и кинетики быстрых химических реакций (см. Мезонная химия , Ядерная химия).

Кварковая модель адронов

Детальное рассмотрение квантовых чисел адронов с целью их классификации позволило сделать вывод о том, что странные адроны и обычные адроны в совокупности образуют объединения частиц с близкими свойствами, названные унитарными мультиплетами. Числа входящих в них частиц равны 8 (октет) и 10 (декуплет). Частицы, входящие в состав унитарного мультиплета, имеют одинаковые и внутреннюю четность, но различаются значениями электрического заряда (частицы изотопического мультиплета) и странности. С унитарными группами связаны свойства симметрии, их обнаружение явилось основой для вывода о существовании особых структурных единиц, из которых построены адроны, - кварков. Считают, что адроны представляют собой комбинации 3 фундаментальных частиц со спином ½: n -кварков, d -кварков и s -кварков. Так, мезоны составлены из кварка и антикварка, барионы - из 3 кварков.

Допущение, что адроны составлены из 3 кварков, было сделано в 1964 (Дж.Цвейг и независимо от него М.Гелл-Ман). В дальнейшем в модель строения адронов (в частности, для того чтобы не возникало противоречия с принципом Паули) были включены еще 2 кварка - "очарованный" (с ) и "красивый" (b ), а также введены особые характеристики кварков - "аромат" и "цвет". Кварки, выступающие как составные части адронов, в свободном состоянии не наблюдались. Все многообразие адронов обусловлено различными сочетаниями n -, d -, s -, с - и b -кварков, образующих связные состояния. Обычным адронам (протону, нейтрону, π-мезонам) соответствуют связные состояния, построенные из n - и d -кварков. Наличие в адроне наряду с n - и d -кварками одного s- , с - или b -кварка означает, что соответствующий адрон - "странный", "очарованный" или "красивый".

Кварковая модель строения адронов подтвердилась в результате экспериментов, проведенных в конце 60-х - начале 70-х гг. XX в. Кварки фактически стали рассматриваться как новые элементарные частицы - истинно элементарные частицы для адронной формы материи. Ненаблюдаемость свободных кварков, по-видимому, носит принципиальный характер и дает основания предполагать, что они являются теми элементарными частицами , которые замыкают цепь структурных составляющих вещества. Существуют теоретические и экспериментальные доводы в пользу того, что силы, действующие между кварками, не ослабевают с расстоянием, т.е. для отделения кварков друг от друга требуется бесконечно большая энергия или, иначе говоря, возникновение кварков в свободном состоянии невозможно. Это делает их совершенно новым типом структурных единиц вещества. Возможно, что кварки выступают как последняя ступень дробления материи.

Краткие исторические сведения

Первой открытой элементарной частицей был электрон - носитель отрицательного электрического заряда в атомах (Дж.Дж.Томсон, 1897). В 1919 Э.Резерфорд обнаружил среди частиц, выбитых из атомных ядер, протоны. Нейтроны открыты в 1932 Дж.Чедвиком. В 1905 А.Эйнштейн постулировал, что электромагнитное излучение является потоком отдельных квантов (фотонов) и на этой основе объяснил закономерности фотоэффекта. Существование как особой элементарной частицы впервые предложил В.Паули (1930); электронное

Элементарная частица

Элементарная частица (англ. Elementary particle) - мельчайший неделимый объект в микромире (в атомном, ядерном и субъядерном масштабе). Из элементарных частиц состоят атомы и атомные ядра барионного вещества (и антивещества), а из электронных нейтрино (в гигантских количествах выбрасываемых звездами) состоит нейтринное вещество, которое астрономы выдают за "темную материю". Экспериментально установлено, что элементарные частицы одновременно обладают корпускулярными и волновыми свойствами (корпускулярно-волновой дуализм), а также наличие у элементарных частиц электромагнитных полей.

    1 История
    2 Классификация элементарных частиц

      2.1 Классификация элементарных частиц в квантовой теории
      2.2 Классификация элементарных частиц в полевой теории элементарных частиц
    3 Систематизация элементарных частиц
    4 Масса у элементарных частиц
    5 Радиус элементарной частицы (определяемый полевой теорией элементарных частиц)
    6 Возбужденные состояния элементарных частиц
    7 Элементарная частица и теория гравитации элементарных частиц
    8 Немного о Стандартной модели элементарных частиц
    9 Элементарная частица и "теория струн"
    10 Элементарная частица - разное
    11 Новая физика: Элементарная частица - итог

1 История

С открытием элементарных частиц физика задалась вопросом об их количестве и строении. Пока элементарных частиц было открыто порядка 10 - каждая элементарная частица считалась истинно элементарной, и делались попытки объяснить строение элементарных частиц исходя из электромагнитного поля. Но построить сходу полевую теорию элементарных частиц не получилось.

Параллельно в физике велись работы по созданию квантовой теории поля , которые выдвинулись на передний план. В основе квантовой теории лежит утверждение, что взаимодействия носят дискретный характер и передаются с помощью переносчиков - квантов. Но реально в природе были обнаружены только фотон и другие элементарные частицы. Поэтому в качестве не существующих в природе переносчиков взаимодействий элементарных частиц были выбраны сами элементарные частицы, которым приписывалась возможность временного существования и в виртуальном состоянии в нарушение закона сохранения энергии. Началась эра манипуляций над законами природы.

Предложенная в 1964 году модель кварков (впоследствии Стандартная модель элементарных частиц) утверждала, что элементарные частицы (участвующие в гипотетическом сильном взаимодействии) имеют сложную структуру и состоят из гипотетических кварков. В качестве математического обоснования гипотезы кварков была разработана унитарная симметрия. Но вымышленные кварки не были обнаружены (в природе нет дробного электрического заряда, равного по величине заряду гипотетических кварков), ни при каких энергиях и тогда Стандартной модели пришлось выдумать механизм препятствующий появлению кварков в свободном виде. Для этого гипотетические глюоны (гипотетические переносчики гипотетического сильного взаимодействия гипотетических кварков, также не найденные в природе - поскольку для них не оказалось места в спектре элементарных частиц) были наделены уникальными свойствами (конфайнмент) - способностью создавать себе подобных при движении (такой способностью не обладает ни одна элементарная частица). Понятно, что закон сохранения энергии - фундаментальный закон природы опять был проигнорирован.

Несмотря на кажущийся успех Стандартной модели элементарных частиц, работы над полевой теорией элементарных частиц не прекращались. Прогресс в данном направлении наметился в середине 70-х годов прошлого века, когда была сделана попытка объединить классику с не противоречащей ей частью квантовой механики (пришлось пожертвовать виртуальными частицами, нарушающими закон сохранения энергии). Так в результате ввода квантовых чисел удалось получить правильный спектр основных состояний элементарных частиц (включающий фотон, лептоны без тау-лептона, мезоны, барионы, векторные мезоны). Стало ясно, что данное направление является перспективным. Дальнейшая работа, подкрепленная развитием вычислительной техники и появлением компьютеров позволяющих рассчитывать взаимодействия магнитных полей привела к значительному продвижению полевой теории элементарных частиц.

Полевая теория элементарных частиц, действуя в рамках НАУКИ, опирается на проверенный ФИЗИКОЙ фундамент:

  • Классическую электродинамику,
  • Квантовую механику (без виртуальных частиц),
  • Законы сохранения - фундаментальные законы физики.

В этом принципиальное отличие научного подхода, использованного полевой теорией элементарных частиц - подлинная теория должна строго действовать в рамках законов природы: в этом и заключается НАУКА. Пришлось отбросить, по причине недоказанности, некоторые квантовые числа, постулированные Квантовой теорией и Стандартной моделью и связанные с ними якобы законы сохранения, бездоказательно приписанные их сторонниками к числу законов физики.

Теперь полевая теория элементарных частиц описывает весь спектр элементарных частиц, в котором естественно не нашлось места для сказочных: кварков, глюонов, гравитонов, гравитино, нейтралино, партонов, преонов, ... . Кроме того полевая теория объяснила откуда берется электрический заряд элементарных частиц и почему он квантуется, магнитные поля элементарных частиц и чем на самом деле являются ядерные силы . Но самое главное - это то, что все законы природы "снова" действуют, в том числе и такой нелюбимый квантовой теорией фундаментальный закон природы - закон сохранения энергии.

Подведем итог сказанному :
1. Квантовая теория вместе со Стандартной моделью утверждает, что каждая элементарная частица, участвующая в гипотетическом сильном взаимодействии (называемая ими адроном), состоит из кварков - но кварки (равно как и глюоны) не были обнаружены на ускорителях и вообще в природе ни при каких энергиях, а обмен виртуальными частицами противоречит законам природы.

2. Полевая теория утверждает, что элементарные частицы (с квантовым числом L>0, существование которого у элементарных частиц установлено полевой теорией) состоят из вращающегося поляризованного переменного электромагнитного поля с постоянной составляющей. Такие элементарные частицы должны обладать:

  • постоянным электрическим полем,
  • постоянным магнитным полем,
  • волновым переменным электромагнитным полем.

Наличие данных полей у элементарных частиц с ненулевой величиной массы покоя, а также гравитационного поля (создаваемого электромагнитными полями элементарных частиц), физика подтвердила экспериментально для ряда элементарных частиц.

С электромагнитными полями как постоянными, так и переменными мы сталкиваемся на каждом шагу. Число элементарных частиц бесконечно и каждая элементарная частица (с квантовым числом L>0) имеет бесконечное число возбужденных состояний . Благодаря наличию переменного электромагнитного поля элементарные частицы обладают волновыми свойствами. Таким видится микромир полевой теорией элементарных частиц.


Элементарная частица с квантовым числом L>0 в полевой теории




Строение протона в полевой теории (поперечное сечение) (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле).

Как мы видим, полевая теория охватывает все элементарные частицы и объясняет их строение исходя из реально существующих в природе полей.

2 Классификация элементарных частиц

2.1 Классификация элементарных частиц в квантовой теории

С точки зрения квантовой теории все элементарные частицы делятся на два класса:

  • фермионы - элементарные частицы с полуцелым спином;
  • бозоны - элементарные частицы с целым спином.
Квантовая теория вводит следующие (с ее точки зрения существующие) фундаментальные взаимодействия:

При этом, кроме сильного взаимодействия и слабого взаимодействия, квантовая теория вводит особое электромагнитное взаимодействие, вместо действительно существующих в природе электромагнитных взаимодействий (отбросив взаимодействия магнитных полей элементарных частиц, которые не вписывались в квантовую теорию).

По видам введенных фундаментальных взаимодействий квантовая теория разделяет элементарные частицы на следующие группы:

  • адроны - элементарные частицы, участвующие во всех видах фундаментальных взаимодействий (постулированных квантовой теорией), как реально существующих в природе, так и вымышленных;
  • лептоны - фермионы, участвующие в электромагнитном и гипотетическом слабом взаимодействии (квантовой теории);
  • калибровочные бозоны - фотон, промежуточные векторные бозоны и предполагаемые переносчики взаимодействий (в рамках предположений квантовой теории).

Здесь указаны предполагаемые квантовой теорией и Стандартной моделью, но не найденные в природе: кварки, глюоны, гравитон, бозон Хиггса (под видом якобы найденного бозона Хиггса нам подсовывают вновь открытую элементарную частицу: векторный мезон), но не указаны мезоны и барионы, поскольку квантовая теория не считает данные элементарные частицы истинно элементарными. Кроме того часть векторных мезонов квантовая теория отнесла к элементарным частицам поскольку она считает, что они являются переносчиками слабого взаимодействия (постулированного квантовой теорией) - это W- и Z-бозоны. Остальные векторные мезоны квантовая теория не считает элементарными частицами.

2.2 Классификация элементарных частиц в полевой теории элементарных частиц

С точки зрения полевой теории элементарных частиц все элементарные частицы делятся на группы по квантовому числу L лежащему в основе спина, а спектр элементарных частиц определяется одновременно Квантовой механикой и Классической электродинамикой. Из бесконечного набора возможных значений спина выделяется только нуль (L=1) поскольку в этой группе мезонов невозможно отличить нейтральную частицу от соответствующей античастицы.

Все элементарные частицы можно разбить на следующие основные группы:

  • фотон
  • лептоны
  • мезоны
  • барионы
  • векторные мезоны

При этом число барионов и векторных мезонов в основном состоянии в природе бесконечно. Данная классификация разбивает элементарные частицы по квантовому числу L.



Фрагмент спектра основных состояний элементарных частиц


Элементарные частицы: фрагмент спектра основных состояний и возбужденных состояний (по полевой теории)

Гипотетических Слабых взаимодействий в природе нет, а степень участия элементарных частиц в ядерных силах определяется квантовым числом L (см. строение элементарных частиц) и энергией сосредоточенной в постоянном магнитном поле. С ростом квантового числа L растет процент энергии сосредоточенной в постоянном магнитном поле элементарных частиц, а также величина массы покоя - следовательно, растет и степень участия частицы в "сильных" взаимодействиях (а если правильно: в ядерных силах). Так что из четырех (предполагаемых квантовой теорией) типов фундаментальных взаимодействий в природе реально существует только два - электромагнитные и гравитационные , как и соответствующие им поля.

При этом электромагнитные взаимодействия отличаются от электромагнитного взаимодействия, учитываемого квантовой теорией, поскольку электромагнитные взаимодействия учитывают взаимодействия не только электрических но и магнитных полей.

3 Систематизация элементарных частиц

Имеется только одна систематизация элементарных частиц и их возбужденных состояний вытекающая из полевой теории элементарных частиц.

4 Масса у элементарных частиц

В соответствии с классической электродинамикой и формулой Эйнштейна, а также полевой теорией элементарных частиц, масса покоя элементарной частицы определяется как эквивалент энергии ее электромагнитных полей:

где определенный интеграл берется по всему собственному электромагнитному полю элементарной частицы, E - напряженность электрического поля, H - напряженность магнитного поля. Здесь учитываются все компоненты собственного электромагнитного поля: постоянное электрическое поле, постоянное магнитное поле, переменное электромагнитное поле. Это согласуется с реально существующими в природе фундаментальными взаимодействиями. Никакой сказочный бозон Хиггса массу покоя элементарных частиц и их гравитационное поле - не создает и создавать не может, поскольку, согласно теории гравитации элементарных частиц, гравитационные поля элементарных частиц и инерционная масса элементарных частиц создаются их электромагнитными полями .

Поместив элементарную частицу во внешнее электрическое или магнитное поле (например, протон или нейтрон в атомное ядро), мы изменим величину энергии электромагнитных полей элементарной частицы, а следовательно, и величину ее массы, в результате чего изменится ее среднее время жизни. Таким образом: масса покоя элементарной частицы, ее среднее время жизни (в том числе и каналы распада) зависят от электромагнитных полей, в которых частица находится , а не только от величины ее скорости движения (как следует из СТО).

5 Радиус элементарной частицы (определяемый полевой теорией элементарных частиц)

Полевая теория элементарных частиц вводит определение полевого радиуса элементарной частицы (r 0~), как среднего расстояния от центра элементарной частицы (с квантовым числом L>0), на котором вращается переменное электромагнитное поле:

где:
L - главное квантовое число элементарной частицы;
ħ - постоянная Планка;
m 0~ - масса, заключенная в переменном электромагнитном поле элементарной частицы;
c - скорость света.

Строение протона в полевой теории (поперечное сечение) (E-постоянное электрическое поле,H-постоянное магнитное поле, желтым цветом отмечено переменное электромагнитное поле).


Строение электрона в полевой теории (поперечное сечение)


Строение нейтрона в полевой теории (поперечное сечение)
Как видно из представленных рисунков, электрические поля элементарных частиц - дипольные .

На картинках электрон выглядит меньше протона, а в действительности полевой радиус электрона в 600 раз больше протонного (и нейтронного), следовательно упасть на атомное ядро электрон никак не может - линейные размеры электрона превышают линейные размеры любого атомного ядра (даже самого тяжелого). Электрон не присутствует внутри нейтрона, а создается электромагнитным полем в процессе распада нейтрона, естественно вместе с электронным антинейтрино, обладающим еще большими (чем электрон) размерами.

В m 0~ сосредоточена только часть величины массы покоя элементарной частицы:

M 0 - масса покоя элементарной частицы.
m 0= - масса, заключенная в постоянном электрическом и постоянном магнитном поле элементарной частицы.

Радиус области пространства, занимаемого элементарной частицей, определяется как:

К величине r 0~ добавился еще радиус кольцевой области, занимаемой переменным электромагнитным полем элементарной частицы. Необходимо помнить, что часть величины массы покоя, сосредоточенной в постоянных (электрическом и магнитном) полях элементарной частицы находится за пределами данной области, в соответствии с законами электродинамики.

6 Возбужденные состояния элементарных частиц

Согласно полевой теории элементарных частиц, элементарные частицы с квантовым числом L>0 могут находиться и в возбужденном состоянии, отличающемся от основного наличием дополнительного вращательного момента (V) . Физика уже экспериментально открыла множество таких состояний у элементарных частиц. Примеры приведены на рисунках:

подгруппа мюона


подгруппа пи-мезона


подгруппа протона

7 Элементарная частица и теория гравитации элементарных частиц

Появившаяся в 2015 году теория гравитации элементарных частиц установила наличие в природе электромагнитной формы гравитации. При этом необходимо четко понимать: в природе существует не гравитационное поле вещества, а гравитационные поля элементарных частиц, из которых состоит вещество. Это суперпозиция векторных полей, и они складываются по правилам сложения векторов.

Поскольку гравитационные поля вещества создаются электромагнитными полями элементарных частиц, из которых это вещество состоит, то возник вопрос и о природе инерционных свойств вещества.

В уравнении 137 теории гравитации элементарных частиц было установлено, что кинетическая энергия электромагнитного поля элементарной частицы равна кинетической энергии ее инертной массы.


Отсюда следует: электрическая и магнитная составляющая электромагнитного поля элементарной частицы и создают инерционные свойства полевой материи, из которой состоит вещество Вселенной .

Тем самым теорией гравитации элементарных частиц было доказано, что гравитационные поля вещества и инерционные свойства вещества создаются электромагнитными полями элементарных частиц, из которых это вещество состоит. - ФИЗИКОЙ 21 века была опровергнута математическая СКАЗКА о "бозоне Хиггса".

Элементарные частицы, из которых состоит вещество Вселенной - являются формой электромагнитной полевой материи и этой форме материи не требуется никакой сказочный "бозон Хиггса" вместе со своими сказочными взаимодействиями, выдуманными Стандартной моделью и квантовой теорией. Конечно, можно выдумать новую форму материи, но это будет новая математическая СКАЗКА.

8 Немного о Стандартной модели элементарных частиц

В 1964 году Гелл-манн и Цвейг независимо предложили гипотезу существования кварков, из которых, по их мнению, состоят адроны. Удалось правильно описать спектр известных тогда элементарных частиц, но придуманные кварки пришлось наделить дробным электрическим зарядом, не существующим в природе. Лептоны в эту Кварковую модель, которая впоследствии переросла в Стандартную модель элементарных частиц, вообще НЕ вписались - поэтому были признаны истинно элементарными частицами, наравне с придуманными кварками. Чтобы объяснить связь кварков в адронах (барионах, мезонах), было предположено существование в природе сильного взаимодействия и его переносчиков - глюонов. Глюоны, как и положено в Квантовой теории, наделили единичным спином, тождественности частицы и античастицы и нулевой величиной массы покоя, как у фотона. В действительности, в природе существует не сильное взаимодействие гипотетических кварков, а ядерные силы нуклонов - и это РАЗНЫЕ понятия.


Прошло 50 лет. Вымышленные кварки так и не были найдены в природе и нам сочинили новую математическую сказочку под названием "Конфайнмент". Мыслящий человек с легкостью увидит в ней откровенное издевательство над фундаментальным законом природы - законом сохранения энергии. Но это сделает мыслящий человек, а сказочники получили устроившее их оправдание, почему в природе нет кварков в свободном виде.

Введенные глюоны также НЕ были найдены в природе. Дело в том, что единичным спином могут обладать в природе только векторные мезоны (и еще одно из возбужденных состояний мезонов), но у каждого векторного мезона имеется античастица. - Поэтому векторные мезоны на кандидаты в «глюоны» никак не подходят, и им не припишешь роль переносчиков вымышленного сильного взаимодействия. Остается девятка первых возбужденный состояний мезонов, но 2 из них противоречат самой Стандартной модели элементарных частиц и их существование в природе Стандартная модель не признает, а остальные неплохо изучены физикой, и выдать их за сказочные глюоны не получится. Есть еще последний вариант: выдать за глюон связанное состояние из пары лептонов (мюонов или тау-лептонов) - но и это при распаде можно вычислить.

Так что, глюонов в природе также нет, как нет в природе кварков и вымышленного сильного взаимодействия. Вы считаете, что сторонники Стандартной модели элементарных частиц этого не понимают - еще как понимают, вот только тошно признать ошибочность того, чем занимался десятилетиями. А потому мы видим все новые математические псевдонаучные сказки, одна из которых: "теория струн".

9 Элементарная частица и "теория струн"

В начале 1970-х годов в квантовой теории появилось новое направление: "теория струн", изучающее динамику взаимодействия не точечных частиц, а одномерных протяжённых объектов (квантовых струн). Была сделана попытка объединить идеи квантовой механики и теории относительности на основе главенства квантовой теории. Ожидалось, что на её основе, будет построена теория квантовой гравитации.

Несколько цитат из Википедии: Теория струн основана на гипотезе о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядка планковской длины 10 -35 м. Данный подход, с одной стороны, позволяет избежать таких трудностей квантовой теории поля, как перенормировка, а с другой стороны, приводит к более глубокому взгляду на структуру материи и пространства-времени.

Несмотря на математическую строгость и целостность теории, пока не найдены варианты экспериментального подтверждения теории струн. Возникшая для описания адронной физики, но не вполне подошедшая для этого, теория оказалась в своего рода экспериментальном вакууме описания всех взаимодействий.

Одна из основных проблем при попытке описать процедуру редукции струнных теорий из размерности 26 или 10 в низкоэнергетическую физику размерности 4 заключается в большом количестве вариантов компактификаций дополнительных измерений на многообразия Калаби - Яу и на орбифолды, которые, вероятно, являются частными предельными случаями пространств Калаби - Яу. Большое число возможных решений с конца 1970-х и начала 1980-х годов создало проблему, известную под названием "проблема ландшафта", в связи с чем, некоторые учёные сомневаются, заслуживает ли теория струн статуса научной .

А теперь уточнения:

  • Электромагнитные поля элементарных частиц не возникают в результате колебаний ультрамикроскопических квантовых струн, а их взаимодействия не являются продуктом взаимодействия этих струн.
  • Основная трудность квантовой "теории" заключается в отсутствии в природе переносчиков, выдуманных ей взаимодействий, и игнорировании виртуальными частицами фундаментального закона природы - закона сохранения энергии. Что касается перенормировки, то одна ее необходимость указывает на ошибочность такой "теории". Взяли и переписали результат действия законов природы - и это выдается за науку.
  • Адронной физики в природе нет, поскольку в природе нет адронов. В природе НЕТ кварков с глюонами, а есть просто элементарные частицы, и фундаментальных взаимодействий всего два.
  • Пространство с размерностью 26 или 10 - а почему не 25 или 11. Манипулируя размерностью пространства, можно построить сколько угодно "теорий", но СКАЗОЧНЫХ. А введение в струнных теориях многомерных объектов - это уж точно из мира математических СКАЗОК.
  • К теориям относительности у физики тоже есть вопросы: специальная теория относительности (СТО) внутри элементарных частиц не работает, а гравитационное поле для общей теории относительности (ОТО) ничто не создает, кроме сказочных "черных дыр", "создаваемых" этим же самым полем и тем самым противоречащих принципу причинности. - Элементарные частицы создают суперпозицию векторных гравитационных полей, а не некоторое абстрактное математическое гравитационное поле для ОТО.
  • Ну а квантовую "теорию гравитации" уже строить не нужно - разработана НАУЧНАЯ ТЕОРИЯ ГРАВИТАЦИИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ, из которых состоит вещество Вселенной. Да и гравитонов в природе НЕТ.
  • Предсказываемые струнными "теориями" тахионы - частицы, движущиеся со скоростью, превышающей скорость света в вакууме, и противоречащие принципу причинности, существуют лишь в таких "теориях" да и в воображении их авторов и сторонников.
  • Предсказанная струнными "теориями" многомерность Вселенной противоречит экспериментальным данным. Физика установила наличие трех пространственных измерений, а Альберт Эйнштейн к ним в специальной теории относительности (работающей не везде) добавил четвертое мнимое измерение - время. Все прочие измерения Вселенной есть продукт воображения некоторых "теоретиков", ставящих свои желания выше законов природы.

Сторонники теории струн, сравнивая ее со Стандартной моделью элементарных частиц и агитируя за теорию струн, заявляют, что у Стандартной модели есть 19 свободных параметров, для подгонки под экспериментальные данные, а у теории струн их нет.

Они кое-что упускают. Когда Стандартная модель элементарных частиц еще называлась кварковой моделью, ей хватало всего 3-х кварков. Но по мере развития, Стандартной модели потребовалось увеличить число кварков до 6-ти (нижний, верхний, странный, очарованный, прелестный, истинный), а каждый гипотетический кварк еще и наделить тремя цветами (r, g, b) – получаем 6×3=18 гипотетических частиц. К ним еще понадобилось добавить 8 глюонов. – Модель разрослась для подгонки под новые экспериментальные данные. Но введения цветов у сказочных кварков оказалось мало и некоторые уже заговорили о сложном строении кварков. Другие сторонники Стандартной модели заявляют, что кварки являются формой полевой материи.

Аналогичная судьба ждет и "теорию" струн. Сначала ее сторонники рассказывают математические сказки, выдавая их за высшее достижение науки, а большинство человечества тупо этому верит. Новую математическую квантовую сказку, выдавая ее за последнее слово физики, уже преподают студентам, наивно считающим, что они получают «подлинные знания». За новую сказку станут получать «научные» звания и Нобелевские премии по «физике», как это было уже с математической сказкой о «Бозоне Хиггса». Новая квантовая сказка будет развиваться, разрастаться, и потребуются параметры для подгонки под новые экспериментальные данные. А когда эта математическая сказка также зайдет в ТУПИК и ОБАНКРОТИТСЯ – сочинят новую сказочку. А всего-то произошла подмена старой обанкротившейся квантовой математической сказки, которая уже не может управлять умами людей, на новую аналогичную сказку. – Одну ХИМЕРУ подменили на другую ХИМЕРУ. Человечество получило такую «науку», какой оно достойно. Вот только ФИЗИКЕ это литературное творчество БЕЗ НАДОБНОСТИ .

Каждый школьник, изучавший геометрию и механику, знает, что число измерений пространства равно трем. К ним Эйнштейн, в качестве четвертого мнимого измерения в рамках действия специальной теории относительности, добавил время. Иных измерений у окружающего нас пространства НЕТ. Что касается пространства общей теории относительности, то оно существует только в виртуальном мире этой теории, как и виртуальное пространство специальной теории относительности, может использоваться там, где эта теория РАБОТАЕТ.

Взрослые дяди с "научными" степенями обнаруживают у пространства в 3-9 раз больше измерений, чем есть в действительности, наверно прочно забыв то, чему их учили в школе. Получается, что для природы у пространства есть одна размерность, а для сторонников теории струн – другая, значительно большая. Они что боги, что могут себе создавать собственное пространство под свои "теоретические" построения. Ну а если они НЕ боги, то тогда просто СКАЗОЧНИКИ от науки, спасающие от неизбежного банкротства Квантовую псевдо-теорию. Желание всеми силами удержаться в «науке» понятно, но может, будет честнее и разумнее, распрощаться с этим сборником математических СКАЗОК, и отправить его в архив истории развития физики, как прошлое ЗАБЛУЖДЕНИЕ, а самим сесть за парту вместе со студентами и переучиться Новой ФИЗИКЕ, что очень противно. Помните сказку о голом короле и чем она закончилась для короля - Вам современная действительность ничего не напоминает?

Подведем итог: за умными словами и сверхсложной математикой "теории струн" скрывается псевдонаучная математическая СКАЗКА, построенная на фальшивом фундаменте .

10 Элементарная частица - разное

Сторонники квантовой теории уверены, что в экспериментах по рассеянию наблюдаются следы кварков в протоне. - Но это одно из возможных объяснений.

Возьмем число гипотетических кварков в адроне и разделим его на два - получится главное квантовое число (L ) элементарных частиц в полевой теории. И это не просто совпадение. Дело в следующем: поскольку внутри элементарных частиц вращается переменное электромагнитное поле - в них будут стоячие волны (это описано в волновых теориях). А в стоячих волнах имеются участки с максимальной интенсивностью (пучности), но также имеются точки, в которых интенсивность всегда равна нулю (узлы). Если рассматривать стоячую волну с точки зрения плотности массы, то ее математически можно условно разбить на несколько равных частей (равно числу пучностей) - и это оказывается равным числу гипотетических кварков в адронах.

Отсюда следует еще одно объяснение экспериментов: В экспериментах по рассеянию наблюдаются стоячие волны переменного электромагнитного поля внутри элементарных частиц . Этим и объясняется невозможность их разбиения на отдельные участки - электромагнитное поле непрерывно и не рассыпается на осколки, а преобразуется по законам природы.

11 Новая физика: Элементарная частица - итог

Я не стал рассматривать все теории и теоретические построения, касающиеся элементарных частиц. Остались нерассмотренными:

  • некоторые научные теории (Волновая теория строения элементарных частиц), которые лучше посмотреть на сайтах авторов,
  • теоретические построения не соответствующие природе квантовой теории (теории суперструн, М-теория и др.) заведшие физику в квантовый ТУПИК своими математическими СКАЗКАМИ,
  • псевдонаучные муляжи, имитирующие науку (такие, как Теория бесконечной вложенности материи), за абстрактными идеями, умными словами и часто сложной математикой скрывающие убогую физику.

"Научная" плодовитость некоторых авторов математических сказок и муляжей очень высока, а тратить время на разбор их литературного творчества, выдаваемого за научное - БЕССМЫСЛЕННО. И вообще, публикация в издании, зарабатывающем на науке, не является доказательством, что перед нами НАУЧНЫЙ ТРУД . Публикуют те, у кого есть на это деньги - капитализм в действии.

У полевой теории элементарных частиц нет принципиальных расхождений с волновыми теориями элементарных частиц, поскольку ее можно рассматривать как дальнейшее развитие волнового направления в физике. Если бы в свое время у волнового направления хватило сил противостоять установлению монополии на истину со стороны квантовой теории и Стандартной модели элементарных частиц - сейчас в учебниках физики было бы написано совсем другое .

В 20 веке возлагались большие надежды на "квантовую теорию" и "Стандартную модель элементарных частиц", последняя объявлялась чуть ли не высшим достижением науки, что наконец открыли все, находящиеся в стандартной модели элементарные частицы. Но как оказалось, природа устроена иначе, чем утверждали эти сборники математических сказок. Кварки и глюоны так и не были найдены ни в природе, ни на ускорителях, ни при какой энергии - а без этих кирпичиков из фундамента стандартная модель элементарных частиц всего лишь СКАЗКА . Также в природе не были найдены переносчики взаимодействий, постулированных квантовой теорией, да и число фундаментальных взаимодействий оказалось значительно меньшим - похоронив квантовую "теорию". Ну а сказочка о виртуальных частицах , выдуманная, чтобы заполнить отсутствие в природе сказочных переносчиков сказочных взаимодействий квантовой "теории", теперь тоже рухнула. Закон сохранения энергии, такой нелюбимый квантовой "теорией" и ее "Стандартной" моделью элементарных частиц, действовал в природе до появления этих сборников математических сказок, и продолжает действовать после их неизбежной кончины.

Грянул 21 век и физика изменилась. Теперь Полевая теория элементарных частиц описывает микромир исходя из реально существующих в природе полей, оставаясь в рамках, действующих в природе законов - как и должно быть в науке . Она стала одним из крупнейших открытий Новой физики 21 века и крупнейшим открытием теоретической физики начала 21 века, явилась успешным завершением части работ над созданием Теории поля, длившихся более 100 лет, приведших к построению Научной картины Микромира. Как оказалось, Микромир - это мир дипольных электромагнитных полей, о существовании которых физика 20 века и не подозревала . К этому добавилась теория гравитации элементарных частиц, установившая электромагнитную природу гравитации и похоронившая кучку математических сказок 20 века ("теорий" гравитации, "супер-гравитации", сказку о "бозоне Хиггса"), в том числе и сказку о "Черных дырах". Исследования в области электронных нейтрино нашли:

  • основной природный источник энергии землетрясений, вулканической деятельности, тектонической деятельности, геотермальной деятельности, теплового потока, исходящего из недр Земли,
  • природные источники так называемого "реликтового излучения",
  • еще один природный механизм красного смещения,
  • похоронили математическую сказку о "Большом взрыве".
Нас ждет еще много захватывающего и интересного, но не ищите этого в мировой Википедии.

Владимир Горунович

В котором есть информация о том, что все элементарные частицы, входящие в состав любого химического элемента, состоят из различного числа неделимых фантомных частичек По, мне стало интересно, почему же в докладе не говорится о кварках, ведь традиционно считается, что именно они являются структурными элементами элементарных частиц.

Теория кварков уже давно стала общепризнанной среди учёных, которые занимаются исследованиями микромира элементарных частиц. И хотя в самом начале введение понятия «кварк» было чисто теоретическим допущением, существование которого лишь предположительно подтвердилось экспериментально, на сегодняшний день этим понятием оперируют как непреклонной истинной. Учёный мир условился называть кварки фундаментальными частицами, и за несколько десятилетий это понятие стало центральной темой теоретических и экспериментальных изысканий в области физики высоких энергий. «Кварк» вошёл в программу обучения всех естественнонаучных ВУЗов мира. На исследования в данной области выделяются огромные средства - чего только стоит строительство Большого адронного коллайдера. Новые поколения учёных, изучая теорию кварков, воспринимают её в том виде, в каком она подана в учебниках, практически не интересуясь историей данного вопроса. Но давайте попробуем непредвзято и честно посмотреть в корень «кваркового вопроса».

Ко второй половине XX века, благодаря развитию технических возможностей ускорителей элементарных частиц - линейных и круговых циклотронов, а затем и синхротронов, учёным удалось открыть множество новых частиц. Однако что делать с этими открытиями они не понимали. Тогда была выдвинута идея, исходя из теоретических соображений, попытаться сгруппировать частицы в поисках некоего порядка (подобно периодической системе химических элементов - таблице Менделеева). Учёные условились тяжелые и средние по массе частицы назвать адронами , а в дальнейшем их разбить на барионы и мезоны . Все адроны участвовали в сильном взаимодействии. Менее тяжелые частицы, назвали лептонами , они участвовали в электромагнитном и слабом взаимодействии . С тех пор физики пытались объяснить природу всех этих частиц, стараясь найти общую для всех модель, описывающую их поведение.

В 1964 году американские физики Мюррей Гелл-Ман (Лауреат Нобелевской премии по физике 1969 г.) и Джордж Цвейг независимо друг от друга предложили новый подход. Было выдвинуто чисто гипотетическое предположение, что все адроны состоят из трёх более мелких частиц и соответствующих им античастиц. И Гелл-Ман назвал эти новые частицы кварками. Занимательно, что само название он позаимствовал из романа Джеймса Джойса «Поминки по Финнегану», где герою во снах часто слышались слова о таинственных трёх кварках. То ли Гелл-Ман слишком эмоционально воспринял этот роман, то ли ему просто нравилось число три, но в своих научных трудах он предлагает ввести в физику элементарных частиц первые три кварка, получившие названия верхний (и — от англ. up), нижний (d — down) и странный (s — strange), обладающие дробным электрическим зарядом + 2 / 3 , — 1 / 3 и — 1 / 3 соответственно, а для антикварков принять, что их заряды противоположны по знаку.

Согласно данной модели протоны и нейтроны, из которых, как предполагают учёные, состоят все ядра химических элементов, составлены из трёх кварков: uud и udd соответственно (снова эти вездесущие три кварка). Почему именно из трёх и именно в таком порядке не пояснялось. Просто так придумали авторитетные научные мужи и всё тут. Попытки сделать теорию красивой не приближают к Истине, а лишь искривляют и без того кривое зеркало, в котором отражена Её частичка. Усложняя простое, мы отдаляемся от Истины. А всё так просто!

Вот так строится «высокоточная» общепризнанная официальная физика. И хотя изначально введение кварков предлагалось в качестве рабочей гипотезы, но спустя короткое время эта абстракция плотно вошла в теоретическую физику. С одной стороны, она позволила с математической точки зрения решить вопрос с упорядочиванием обширного ряда открытых частиц, с другой же, оставалась лишь теорией на бумаге. Как обычно это делается в нашем потребительском обществе, на экспериментальную проверку гипотезы существования кварков было направленно очень много человеческих сил и ресурсов. Средства налогоплательщиков расходуются, людям надо о чём-то рассказывать, отчёты показывать, говорить о своих «великих» открытиях, чтобы получить очередной грант. «Ну раз надо, значит сделаем», - говорят в таких случаях. И вот это случилось.

Коллектив исследователей Стэнфордского отделения Массачусетского технологического института (США) на линейном ускорителе занимался изучением ядра, обстреливая электронами водород и дейтерий (тяжёлый изотоп водорода, ядро которого содержит один протон и один нейтрон). При этом измерялись угол и энергия рассеяния электронов после столкновения. В случае малых энергий электронов рассеянные протоны с нейтронами вели себя как «однородные» частицы, слегка отклоняя электроны. Но в случае с электронными пучками большой энергии отдельные электроны теряли значительную часть своей начальной энергии, рассеиваясь на большие углы. Американские физики Ричард Фейнман (Лауреат Нобелевской премии по физике 1965 г. и, кстати, один из создателей атомной бомбы в 1943-1945 годах в Лос-Аламосе) и Джеймс Бьёркен истолковали данные по рассеянию электронов как свидетельство составного устройства протонов и нейтронов, а именно: в виде предсказанных ранее кварков .

Обратите, пожалуйста, внимание на этот ключевой момент. Экспериментаторы в ускорителях сталкивая пучки частиц (не единичные частицы, а пучки!!!), набирая статистику(!!!) увидели, что протон и нейтрон из чего-то там состоят. Но из чего? Они ведь не увидели кварки, да ещё и в числе трёх штук, это невозможно, они просто увидели распределение энергий и углы рассеяния пучка частиц. А поскольку единственной на то время теорией строения элементарных частиц, хоть и весьма фантастической, была теория кварков, то и посчитали этот эксперимент первой успешной проверкой существования кварков.

Позже, конечно же, последовали и другие эксперименты и новые теоретические обоснования, но суть их одна и та же. Любой школьник, прочитав историю данных открытий, поймёт, насколько всё в этой области физики притянуто за уши, насколько все банально нечестно.

Вот так и ведутся экспериментальные исследования в области науки с красивым названием - физика высоких энергий. Давайте будем честными сами перед собой, на сегодняшний день не существует чётких научных обоснований существования кварков. Этих частиц просто нет в природе. Понимает ли хоть один специалист, что на самом деле происходит при столкновении двух пучков заряженных частиц в ускорителях? То, что на этой кварковой теории строилась так называемая Стандартная модель, которая якобы является самой точной и правильной, ещё ни о чём не говорит. Специалистам хорошо известны все изъяны этой очередной теории. Вот только почему-то об этом принято умалчивать. Но почему? «И самая большая критика Стандартной модели касается тяготения и происхождения массы. Стандартная модель не учитывает тяготения и требует, чтобы масса, заряд и некоторые другие свойства частиц измерялись опытным путем для последующей постановки в уравнения» .

Несмотря на это огромные средства выделяются на эту область исследований, вдумайтесь только, на подтверждение Стандартной модели, а не поиски Истины. Построен Большой адронный коллайдер (CERN, Швейцария), сотни других ускорителей по всему миру, выдаются премии, гранты, содержится огромный штат технических специалистов, но суть всего этого - банальный обман, Голливуд и не более. Спросите любого человека - какую реальную пользу обществу приносят эти исследования - никто вам не ответит, поскольку это тупиковая ветвь науки. С 2012 года заговорили об открытии бозона Хиггса на ускорителе в CERN . История этих исследований - это целый детектив, в основе которого всё тот же обман мировой общественности. Занимательно, что этот бозон якобы открыли именно после того, как зашла речь о прекращении финансирования этого дорогостоящего проекта. И дабы показать обществу важность этих исследований, оправдать свою деятельность, дабы получить новые транши на строительство ещё более мощных комплексов, сотрудникам CERN, работающим в этих исследования, и пришлось пойти на сделку со своей совестью, выдавая желаемое за действительное.

В докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА» на этот счёт есть такая интересная информация: «Учёные обнаружили ча-стицу, предположительно похожую на бозон Хиггса (бозон был пред-сказан английским физиком Пите-ром Хиггсом (Peter Higgs; 1929), со-гласно теории, он должен обладать конечной массой и не иметь спина). На самом деле то, что обнаружили учёные, не является искомым бо-зоном Хиггса. Но эти люди, сами того ещё не осознавая, сделали действительно важное открытие и обнаружили гораздо большее. Они экспериментально обнаружили яв-ление, о котором подробно описа-но в книге «АллатРа» (примечание: книга «АллатРа», стр. 36 послед-ний абзац). .

Как же на самом деле устроен микромир материи? В докладе «ИСКОННАЯ ФИЗИКА АЛЛАТРА» есть достоверная информация об истинном строении элементарных частиц, знания, которые были известны и древним цивилизациям, чему есть неопровержимые доказательства в виде артефактов. Элементарные частицы состоят из различного числа фантомных частичек По . «Фантомная частичка По ‒ это сгусток, состоящий из септонов, вокруг которого находится небольшое разреженное собственное септонное поле. Фантомная частичка По имеет внутренний потенциал (является его носителем), обновляющийся в процессе эзоосмоса. Согласно внутреннему потенциалу, фантомная частичка По имеет свою соразмерность. Самой наименьшей фантомной частичкой По является уникальная силовая фантомная частичка По ‒ Аллат (примечание: подробнее см. далее по докладу) . Фантомная частичка По ‒ это упорядоченная структура, находящаяся в постоянном спиралевидном движении. Она может существовать только в связанном состоянии с другими фантомными частичками По, которые в конгломерате образуют первичные проявления материи. Вследствие своих уникальных функций, является своеобразным фантомом (призраком) для материального мира. Учитывая, что из фантомных частичек По состоит вся материя, это задаёт ей характеристику иллюзорной конструкции и формы бытия, зависимой от процесса эзоосмоса (наполнения внутреннего потенциала).

Фантомные частички По являются нематериальным образованием. Однако в сцепке (последовательном соединении) между собой, выстроенные согласно информационной программе в определённом количестве и порядке, на определённом расстоянии друг от друга, они составляют основу строения любой материи, задают её разнообразие и свойства, благодаря своему внутреннему потенциалу (энергии и информации). Фантомная частичка По ‒ это то, из чего состоят в своей основе элементарные частицы (фотон, электрон, нейтрино и так далее), а также частицы-переносчики взаимодействий. Это первичное проявление материи в этом мире» .

Проведя после прочтения данного доклада такое небольшое исследование истории развития теории кварков и в целом физики высоких энергий, стало понятно, как всё-таки мало знает человек, если ограничивает своё познание лишь рамками материалистического мировоззрения. Одни допущения от ума, теория вероятности, условная статистика, договорённости и отсутствие достоверных знаний. А ведь люди порой на эти исследования тратят свои жизни. Уверен, что среди учёных и этой области физики есть множество людей, которые действительно пришли в науку не ради славы, власти и денег, а ради одной цели - познания Истины. Когда им станут доступны знания «ИСКОННОЙ ФИЗИКИ АЛЛАТРА», они сами наведут порядок и сделают действительно эпохальные научные открытия, которые принесут реальную пользу обществу. С выходом в свет этого уникального доклада сегодня открыта новая страница мировой науки. Теперь уже стоит вопрос не в знаниях как таковых, а в том, готовы ли сами люди к созидательному использованию этих Знаний. В силах каждого человека сделать всё возможное, чтобы все мы преодолели навязанный нам потребительский формат мышления и пришли к пониманию необходимости создания основ построения духовно-созидательного общества будущего в грядущую эпоху глобальных катаклизмов на планете Земля.

Валерий Вершигора

Ключевые слова: кварки, теория кварков, элементарные частицы, бозон Хиггса, ИСКОННАЯ ФИЗИКА АЛЛАТРА, Большой адронный коллайдер, наука будущего, фантомная частичка По, септонное поле, аллат, познание истины.

Литература:

Коккедэ Я., Теория кварков, М., Издательство «Мир», 340 с., 1969, http://nuclphys.sinp.msu.ru/books/b/Kokkedee.htm ;

Arthur W. Wiggins, Charles M. Wynn, The Five Biggest Unsolved Problems in Science, John Wiley & Sons, Inc., 2003 // Уиггинс А., Уинн Ч. «Пять нерешённых проблем науки» в пер. на русский;

Observation of an Excess of Events in the Search for the Standard Model Higgs boson with the ATLAS detector at the LHC, 09 Jul 2012, CERN LHC, ATLAS, http://cds.cern.ch/record/1460439 ;

Observation of a new boson with a mass near 125 GeV, 9 Jul 2012, CERN LHC, CMS, http://cds.cern.ch/record/1460438?ln=en ;

Доклад «ИСКОННАЯ ФИЗИКА АЛЛАТРА» интернациональной группы учёных Международного общественного движения «АЛЛАТРА» под ред. Анастасии Новых, 2015 г. ;

Дальнейшее проникновение в глубины микромира связано с переходом от уровня атомов к уровню элементарных частиц. В качестве первой элементарной частицы в конце XIX в. был открыт электрон, а затем в первые десятилетия XX в. – фотон, протон, позитрон и нейтрон.

После второй мировой войны, благодаря использованию современной экспериментальной техники, и прежде всего мощным ускорителям, в которых создаются условия высоких энергий и громадных скоростей, было установлено существование большого числа элементарных частиц – свыше 300. Среди них имеются как экспериментально обнаруженные, так и теоретически вычисленные, включая резонансы, кварки и виртуальные частицы.

Термин элементарная частица первоначально означал простейшие, далее ни на что не разложимые частицы, лежащие в основе любых материальных образований. Позднее физики осознали всю условность термина “элементарный” применительно к микрообъектам. Сейчас уже не подлежит сомнению, что частицы имеют ту или иную структуру, но, тем не менее, исторически сложившееся название продолжает существовать.

Основными характеристиками элементарных частиц являются масса, заряд, среднее время жизни, спин и квантовые числа.

Массу покоя элементарных частицопределяют по отношению к массе покоя электрона.Существуют элементарные частицы, не имеющие массы покоя, –фотоны . Остальные частицы по этому признаку делятся налептоны – легкие частицы (электрон и нейтрино);мезоны – средние частицы с массой в пределах от одной до тысячи масс электрона;барионы – тяжелые частицы, чья масса превышает тысячу масс электрона и в состав которых входят протоны, нейтроны, гипероны и многие резонансы.

Электрический заряд является другой важнейшей характеристикой элементарных частиц. Все известные частицы обладают положительным, отрицательным либо нулевым зарядом. Каждой частице, кроме фотона и двух мезонов, соответствуют античастицы с противоположным зарядом. Приблизительно в 1963–1964 гг. была высказана гипотеза о существованиикварков – частиц с дробным электрическим зарядом. Экспериментального подтверждения эта гипотеза пока не нашла.

По времени жизни частицы делятся настабильные инестабильные . Стабильных частиц пять: фотон, две разновидности нейтрино, электрон и протон. Именно стабильныечастицы играют важнейшую роль в структуре макротел. Все остальные частицы нестабильны, они существуют около 10 –10 –10 -24 с, после чего распадаются. Элементарные частицы со средним временем жизни 10 –23 –10 –22 с называют резонансами . Вследствие краткого времени жизни они распадаются еще до того, как успеют покинуть атом или атомное ядро. Резонансные состояния вычислены теоретически, зафиксировать их в реальных экспериментах не удается.

Помимо заряда, массы и времени жизни, элементарные частицы описываются также понятиями, не имеющими аналогов в классической физике: понятием спина . Спиномназывается собственный момент импульса частицы, не связанный с ее перемещением. Спин характеризуетсяспиновым квантовым числом s , которое может принимать целые (±1) или полуцелые (±1/2) значения. Частицы с целым спином –бозоны , с полуцелым –фермионы . Электрон относится к фермионам. Согласно принципу Паули в атоме не может быть более одного электрона с одним и тем же набором квантовых чиселn ,m ,l ,s . Электроны, которым соответствует волновые функции с одинаковым числомn, очень близки по энергиям и образуют в атоме электронную оболочку. Различия в числеlопределяют “подоболочку”, остальные квантовые числа определяют ее заполнение, о чем было сказано выше.

В характеристике элементарных частиц существует еще одно важное представление взаимодействия . Как отмечалось ранее, известно четыре вида взаимодействий между элементарными частицами:гравитационное , слабое , электромагнитное и сильное (ядерное).

Все частицы, имеющие массу покоя (m 0), участвуют в гравитационном взаимодействии, заряженные – и в электромагнитном. Лептоны участвуют еще и слабом взаимодействии. Адроны участвуют во всех четырех фундаментальных взаимодействиях.

Согласно квантовой теории поля, все взаимодействия осуществляются благодаря обмену виртуальными частицами , то есть частицами, о существовании которых можно судить лишь опосредовано, по некоторым их проявлениям через какие-то вторичные эффекты (реальные частицы можно непосредственно зафиксировать с помощью приборов).

Оказывается, что все известные четыре типа взаимодействий – гравитационное, электромагнитное, сильное и слабое – имеют калибровочную природу и описываются калибровочными симметриями. То есть все взаимодействия как бы сделаны “из одной болванки”. Это вселяет надежду, что можно будет найти “единственный ключ ко всем известным замкам” и описать эволюцию Вселенной из состояния, представленного единым суперсимметричным суперполем, из состояния, в котором различия между типами взаимодействий, между всевозможными частицами вещества и квантами полей еще не проявлены.

Существует огромное число способов классификации элементарных частиц. Так, например, частицы разделяют на фермионы (Ферми-частицы) – частицы вещества и бозоны (Бозе-частицы) – кванты полей.

Согласно другому подходу, частицы разделяют на 4 класса: фотоны, лептоны, мезоны, барионы.

Фотоны (кванты электромагнитного поля) участвуют в электромагнитных взаимодействиях, но не обладают сильным, слабым, гравитационным взаимодействиями.

Лептоны получили свое название от греческого слова l eptos – легкий. К их числу относятся частицы, не обладающие сильным взаимодействием мюоны (μ – , μ +), электроны (е – , е +),электронные нейтрино (v e – ,v e +) и мюонные нейтрино (v – m ,v + m). Все лептоны имеют спин, равный ½, и, следовательно, являются фермионами. Все лептоны обладают слабым взаимодействием. Те из них, которые имеют электрический заряд (то есть мюоны и электроны), обладают также электромагнитным взаимодействием.

Мезоны – сильно взаимодействующие нестабильные частицы, не несущие так называемого барионного заряда. К их числу принадлежитр -мезоны, или пионы (π + , π – , π 0),К -мезоны, или каоны (К + , К – , К 0), иэта -мезоны (η). МассаК -мезонов составляет ~970mе (494 МэВ для заряженных и 498 МэВ для нейтральныхК -мезонов). Время жизниК -мезонов имеет величину порядка 10 –8 с. Они распадаются с образованиемя -мезонов и лептонов или только лептонов. Массаэта -мезонов равна 549 МэВ (1074mе), время жизни – порядка 10 –19 с.Эта -мезоны распадаются с образованием π-мезонов и γ-фотонов. В отличие от лептонов, мезоны обладают не только слабым (и, если они заряжены, электромагнитным), но также и сильным взаимодействием, проявляющимся при взаимодействии их между собой, а также при взаимодействии между мезонами и барионами. Спин всех мезонов равен нулю, так что они являются бозонами.

Класс барионов объединяет в себе нуклоны (p,n) и нестабильные частицы с массой больше массы нуклонов, получившие название гиперонов. Все барионы обладают сильным взаимодействием и, следовательно, активно взаимодействуют с атомными ядрами. Спин всех барионов равен ½, так что барионы являются фермионами. За исключением протона, все барионы нестабильны. При распаде барионов, наряду с другими частицами, обязательно образуется барион. Эта закономерность является одним из проявленийзакона сохранения барионного заряда .

Кроме перечисленных выше частиц обнаружено большое число сильно взаимодействующих короткоживущих частиц, которые получили название резонансов . Эти частицы представляют собой резонансные состояния, образованные двумя или большим числом элементарных частиц. Время жизни резонансов составляет всего лишь ~ 10 –23 –10 –22 с.

Элементарные частицы, а также сложные микрочастицы удается наблюдать благодаря тем следам, которые они оставляют при своем прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, ее энергии, импульсе и т. п. Заряженные частицы вызывают ионизацию молекул на своем пути. Нейтральные частицы следов не оставляют, но они могут обнаружить себя в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, в конечном счете нейтральные частицы также обнаруживаются по ионизации, вызванной порожденными ими заряженными частицами.

Частицы и античастицы . В 1928 г. английскому физику П. Дираку удалось найти релятивистское квантово-механическое уравнение для электрона, из которого вытекает ряд замечательных следствий. Прежде всего, из этого уравнения естественным образом, без каких-либо дополнительных предположений, получаются спин и числовое значение собственного магнитного момента электрона. Таким образом, выяснилось, что спин представляет собой величину одновременно и квантовую, и релятивистскую. Но этим не исчерпывается значение уравнения Дирака. Оно позволило также предсказать существование античастицы электрона –позитрона . Из уравнения Дирака получаются для полной энергии свободного электрона не только положительные, но и отрицательные значения. Исследования уравнения показывают, что при заданном импульсе частицы существуют решения уравнения, соответствующие энергиям:.

Между наибольшей отрицательной энергией (–m е с 2) и наименьшей положительной энергией (+m e c 2) имеется интервал значений энергии, которые не могут реализоваться. Ширина этого интервала равна 2m е с 2 . Следовательно, получаются две области собственных значений энергии: одна начинается с + m e с 2 и простирается до +∞, другая начинается с –m е с 2 и простирается до –∞.

Частица с отрицательной энергией должна обладать очень странными свойствами. Переходя в состояния со все меньшей энергией (то есть с увеличивающейся по модулю отрицательной энергией), она могла бы выделять энергию, скажем, в виде излучения, причем, поскольку |Е | ничем не ограничен, частица с отрицательной энергией могла бы излучать бесконечно большое количество энергии. К аналогичному выводу можно прийти следующим путем: из соотношенияЕ =m е с 2 вытекает, что у частицы с отрицательной энергией масса будет также отрицательна. Под действием тормозящей силы частица с отрицательной массой должна не замедляться, а ускоряться, совершая над источником тормозящей силы бесконечно большое количество работы. Ввиду этих трудностей следовало, казалось бы, признать, что состояние с отрицательной энергией нужно исключить из рассмотрения как приводящее к абсурдным результатам. Это, однако, противоречило бы некоторым общим принципам квантовой механики. Поэтому Дирак выбрал другой путь. Он предложил, что переходы электронов в состояния с отрицательной энергией обычно не наблюдаются по той причине, что все имеющиеся уровни с отрицательной энергией уже заняты электронами.

Согласно Дираку, вакуум есть такое состояние, в котором все уровни отрицательной энергии заселены электронами, а уровни с положительной энергией свободны. Поскольку заняты все без исключения уровни, лежащие ниже запрещенной полосы, электроны на этих уровнях никак себя не обнаруживают. Если одному из электронов, находящихся на отрицательных уровнях, сообщить энергию Е ≥ 2m е с 2 , то этот электрон перейдет в состояние с положительной энергией и будет вести себя обычным образом, как частица с положительной массой и отрицательным зарядом. Эта первая из предсказанных теоретически частиц была названа позитроном. При встрече позитрона с электроном они аннигилируют (исчезают) – электрон переходит с положительного уровня на вакантный отрицательный. Энергия, соответствующая разности этих уровней, выделяется в виде излучения. На рис. 4 стрелка 1 изображает процесс рождения пары электрон-позитрон, а стрелка 2 – их аннигиляцию Термин “аннигиляция” не следует понимать буквально. По существу, происходит не исчезновение, а превращение одних частиц (электрона и позитрона) в другие (γ-фотоны).

Существуют частицы, которые тождественны со своими античастицами (то есть не имеют античастиц). Такие частицы называются абсолютно нейтральными. К их числу принадлежат фотон, π 0 -мезон и η-мезон. Частицы, тождественные со своими античастицами, не способны к аннигиляции. Это, однако, не означает, что они вообще не могут превращаться в другие частицы.

Если барионам (то есть нуклонам и гиперонам) приписать барионный заряд (или барионное число) В = +1, антибарионам – барионный заряд В = –1, а всем остальным частицам – барионный зарядВ = 0, то для всех процессов, протекающих с участием барионов и антибарионов, будет характерно сохранение барионов заряда, подобно тому как для процессовхарактерно сохранение электрического заряда. Закон сохранения барионного заряда обусловливаетстабильность самого мягкого из барионов – протона. Преобразование всех величин, описывающих физическую систему, при котором все частицы заменяются античастицами (например, электроны протонами, а протоны электронами и т. д.), называется зарядом сопряжения.

Странные частицы. К -мезоны и гипероны были обнаружены в составе космических лучей в начале 50-х гг.XXв. Начиная с 1953 г. их получают на ускорителях. Поведение этих частиц оказалось столь необычным, что они были названы странными. Необычность поведения странных частиц заключалась в том, что рождались они явно за счет сильных взаимодействий с характерным временем порядка 10 –23 с, а времена жизни их оказались порядка 10 –8 –10 –10 с. Последнее обстоятельство указывало на то, что распад частиц осуществляется в результате слабых взаимодействий. Было совершенно непонятно, почему странные частицы живут так долго. Поскольку и в рождении, и в распаде λ-гиперона участвуют одни и те же частицы (π-мезоны и протон), представлялось удивительным, что скорость (то есть вероятность) обоих процессов столь различна. Дальнейшие исследования показали, что странные частицы рождаются парами. Это навело на мысль, что сильные взаимодействия не могут играть роли в распаде частиц вследствие того, что для их проявления необходимо присутствие двух странных частиц. По той же причине оказывается невозможным одиночное рождение странных частиц.

Чтобы объяснить запрет одиночного рождения странных частиц, М. Гелл-Манн и К. Нишиджима ввели в рассмотрение новое квантовое число, суммарное значение которого должно, по их предположению, сохраняться при сильных взаимодействиях. Это квантовое число S было названостранностью частицы . При слабых взаимодействиях странность может не сохраняться. Поэтому она приписывается только сильно взаимодействующим частицам – мезонам и барионам.

Нейтрино. Нейтрино – единственная частица, которая не участвует ни в сильных, ни в электромагнитных взаимодействиях. Исключая гравитационное взаимодействие, в которомучаствуют все частицы, нейтрино может принимать участие лишь в слабых взаимодействиях.

Долгое время оставалось неясным, чем отличается нейтрино от антинейтрино. Открытие закона сохранения комбинированной четности дало возможность ответить на этот вопрос: они отличаются спиральностью. Под спиральностью понимается определенное соотношение между направлениями импульсаР и спинаS частицы. Спиральность считается положительной, если спин и импульс имеют одинаковое направление. В этом случаенаправление движения частицы (Р ) и направление “вращения”, соответствующего спину, образуют правый винт. При противоположно направленных спине и импульсе спиральность будет отрицательной (поступательное движение и “вращение” образуют левый винт). Согласно развитой Янгом, Ли, Ландау и Саламом теории продольного нейтрино, все существующие в природе нейтрино, независимо от способа их возникновения, всегда бывают полностью продольно поляризованы (то есть спин их направлен параллельно или антипараллельно импульсу Р ). Нейтрино имеет отрицательную (левую) спиральность (ему соответствует соотношение направлений S и Р , изображенное на рис. 5 (б), антинейтрино – положительную (правую) спиральность (а). Таким образом, спиральность – это то, что отличает нейтрино от антинейтрино.

Рис. 5. Схема спиральности элементарных частиц

Систематика элементарных частиц. Закономерности, наблюдаемые в мире элементарных частиц, могут быть сформулированы в виде законов сохранения. Таких законов накопилось уже довольно много. Некоторые из них оказываются не точными, а лишь приближенными. Каждый закон сохранения выражает определенную симметрию системы. Законы сохранения импульсаР , момента импульсаL и энергииЕ отражают свойства симметрии пространства и времени: сохранениеЕ есть следствие однородности времени, сохранениеР обусловлено однородностью пространства, а сохранениеL – его изотропностью. Закон сохранения четности связан с симметрией между правым и левым (Р -инвариантность). Симметрия относительно зарядового сопряжения (симметрия частиц и античастиц) приводит к сохранению зарядовой четности (С -инвариантность). Законы сохранения электрического, барионного и лептонного зарядов выражают особую симметриюС -функции. Наконец, закон сохранения изотопического спина отражает изотропность изотопического пространства. Несоблюдение одного из законов сохранения означает нарушение в данном взаимодействии соответствующего вида симметрии.

В мире элементарных частиц действует правило: разрешено все, что не запрещают законы сохранения . Последние играют роль правил запрета, регулирующих взаимопревращения частиц. Прежде всего отметим законы сохранения энергии, импульса и электрического заряда. Эти три закона объясняют стабильность электрона. Из сохранения энергии и импульса следует, что суммарная масса покоя продуктов распада должна быть меньше массы покоя распадающейся частицы. Значит, электрон мог бы распадаться только на нейтрино и фотоны. Но эти частицы электрически нейтральны. Вот и получается, что электрону просто некому передать свой электрический заряд, поэтому он стабилен.

Кварки. Частиц, называемых элементарными, стало так много, что возникли серьезные сомнения в их элементарности. Каждая из сильно взаимодействующих частиц характеризуется тремя независимыми аддитивными квантовыми числами: зарядомQ , гиперзарядомУ и барионным зарядомВ . В связи с этим появилась гипотеза о том, что все частицы построены из трех фундаментальных частиц – носителей этих зарядов. В 1964 г. Гелл-Манн и независимо от него швейцарский физик Цвейг выдвинули гипотезу, согласно которой все элементарные частицы построены из трех частиц, названных кварками. Этим частицам приписываются дробные квантовые числа, в частности, электрический заряд, равный +⅔; –⅓; +⅓ соответственно для каждого из трех кварков. Эти кварки обычно обозначаются буквамиU ,D ,S . Кроме кварков, рассматриваются антикварки (u ,d ,s). На сегодняшний день известно 12 кварков – 6 кварков и 6 антикварков. Мезоны образуются из пары кварк-антикварк, а барионы – из трех кварков. Так, например, протон и нейтрон состоят из трех кварков, что делает протон или нейтрон бесцветными. Соответственно различают три заряда сильных взаимодействий – красный (R ), желтый (Y ) и зеленый (G ).

Каждому кварку приписывается одинаковый магнитный момент (мкВ), величина которого из теории не определяется. Расчеты, произведенные на основании такого предположения, дают для протона значение магнитного момента μ p = μ кв, а для нейтрона μ n = – ⅔μ кв.

Таким образом, для отношения магнитных моментов получается значение μ p / μ n = –⅔, превосходно согласующееся с экспериментальным значением.

В основном цвет кварка (подобно знаку электрического заряда) стал выражать различие в свойстве, определяющем взаимное притяжение и отталкивание кварков. По аналогии с квантами полей различных взаимодействий (фотонами в электромагнитных взаимодействиях,р -мезонами в сильных взаимодействиях и т. д.) были введены частицы-переносчики взаимодействия между кварками. Эти частицы были названыглюонами . Они переносят цвет от одного кварка к другому, в результате чего кварки удерживаются вместе. В физике кварков сформулирована гипотеза конфайнмента (от англ.confinements – пленение) кварков, согласно которой невозможно вычитание кварка из целого. Он может существовать лишь в качествеэлемента целого. Существование кварков как реальных частиц в физике надежно обосновано.

Идея кварков оказалась весьма плодотворной. Она позволила не только систематизировать уже известные частицы, но и предсказать целый ряд новых. Положение, сложившееся в физике элементарных частиц, напоминают положение, создавшееся в физике атома после открытия в 1869 г. Д. И. Менделевым периодического закона. Хотя сущность этого закона была выяснена только спустя примерно 60 лет после создания квантовой механики, он позволил систематизировать известные к тому времени химические элементы и, кроме того, привел к предсказанию существования новых элементов и их свойств. Точно так же физики научились систематизировать элементарные частицы, причем разработанная систематика вряде случаев позволила предсказать существование новых частиц и предвосхитить их свойства.

Итак, в настоящее время истинно элементарными можно считать кварки и лептоны; их 12, или вместе с античатицами – 24. Кроме того, существуют частицы, обеспечивающие четыре фундаментальные взаимодействия (кванты взаимодействия). Этих частиц 13: гравитон, фотон, W ± - иZ -частицы и 8 глюонов.

Существующие теории элементарных частиц не могут указать, что является началом ряда: атомы, ядра, адроны, кваркиВ этом ряду каждая более сложная материальная структура включает более простую как составную часть. По-видимому, так бесконечно продолжаться не может. Предположили, что описанная цепочка материальных структур базируется на объектах принципиально иной природы. Показано, что такими объектами могут быть не точечные, а протяженные, хотя и чрезвычайно малые (~10 ‑33 см) образования, названныесуперструнами. Описанная идея в нашем четырехмерном пространстве не реализуема. Данная область физики вообще чрезвычайно абстрактна, и очень трудно подобрать наглядные модели, помогающие упрощенному восприятию идей, заложенных в теориях элементарных частиц. Тем не менее, эти теории позволяют физикам выразить взаимопревращение и взаимообусловленность “наиболее элементарных” микрообъектов, их связь со свойствами четырехмерного пространства-времени. Наиболее перспективной считается так называемаяМ-теория (М – отmystery – загадка, тайна). Она оперируетдвенадцатимерным пространством . В конечном итоге при переходе к непосредственно воспринимаемому нами четырехмерному миру все “лишние” измерения “сворачиваются”. М-теория пока единственная теория, которая дает возможность свести четыре фундаментальные взаимодействия к одному – так называемойСуперсиле. Важно также, что М-теория допускает существование разных миров и устанавливает условия, обеспечивающие возникновение нашего мира. М-теория еще недостаточно разработана. Считается, что окончательная«теория всего» на основе М-теории будет построена вXXIв.

← Вернуться

×
Вступай в сообщество «passport13.com»!
ВКонтакте:
Я уже подписан на сообщество «passport13.com»