Все о дозах и вреде рентгеновского облучения в медицине. Радиация: какие нормы безопасны

Подписаться
Вступай в сообщество «passport13.com»!
ВКонтакте:

Сколько рентгенов в одном зиверте

Вадим Шулман , инженер-метролог

Таблица соответствия, соотношения микрорентген в час (мкр/ч) и микрозиверт в час (мкЗв/час):

Приблизительное соотношение микрозиверта и микрорентгена, а точного - не бывает

Если радиация только гамма-радиация, т.е. рентгеновское излучение, то
1 Sv == 1 Gy ≈ 115 R (при такой дозе облучения обычно вылечивают)
1 мкЗв == 1 мкГр ≈ 115 мкР (70 мЗв считается дозой облучения гражданского населения за всю жизнь)
1 микро-Зиверт/час == 1 микро-Грэй/час ≈ 115 микрорентген/час

1 миллиЗиверт/час ≈ 100 миллирентген/час

1 миллиЗиверт (mSv, мЗв) = 1000 микрозиверт (µSv, mkSv, мкЗв).

Понятно, что интерес к радиации - отнюдь не академический, а в связи с техногенными катастрофами и неуверенности в правдивости государственной и корпоративной информации.

Скажу так: если радиация пахнет озоном, ногти и волосы светятся в темноте, то как боевая/рабочая единица человек пофункционирует еще часов или суток несколько в зависимости от I-IV степени острай лучевой болезни (ОЛБ). Именно такими критериями оперирует радиология, а вовсе не:
здоровый образ жизни, не болеть
успешное развитие и образование ребенка
возможность произвести здоровое, жизнерадостное потомство и иметь внуков-правнуков
и вообще быть красивым, успешным, жить долго и счастливо.

Какая радиация допустима, а какая нет - вопрос философский. Кому-то для запуска болезни из скрытого состояния достаточно выйти на 5 минут голым на улицу, а кто-то после бани может с удовольствием 10 минут валяться в снегу.

Одно дело - скушать грамм урана-235, другое дело - ввести в кровь грамм раствора соли цезия-137, третье дело пройти мимо 10 тонн чистейщего урана-238 в герметичном контейнере, даже из оконного стекла

Я живу при радиации 5-15 микрорентен в час почти полвека, и ничего. Видел, что около радоновых источников тоже живут, при радиации в 35 мкр/ч. Не заметил, что намного счастливее. Но и заживо-гниющих светящихся местных жителей около радона тоже не встречал. Слухи "про повышенную онкологию" - встречал.

Но если я поднесу радиометр (к которым приклеилось ошибочное название "дозиметр") к образцу со цезием-137 (аппетитному грибу-маслёнку), и измеритель радиации покажет 35 мкр/ч, а потом унесу радиометр на 5 метров, и там показание будет 10 мкр/час, то... Выкину этот образец куда подальше, вопреки тому, что уровень радиации в 35 мкр/ч (0,35 мкЗиверт в час - вполне приемлем как фоновая радиоактивность )

Потому что грамм этого образца скорее всего фонит в 1000 раз больше, чем окружающая меня местность - телесные углы излучения образца и размеры датчика прибора, расстояние считайте сами. :)

Поэтому цифры радиации - это очень условные цифры с точки зрения здоровья. Если радиоактивность воды выше естественного фона, не пейте ее. Вдруг в воде вместо неусваиваемого радона окажется соль радионуклида с длинным периодом полураспада, и организм "эту радиацию" усвоит и расположит где-нибудь в жировых запасах. И будет потом этот радионуклид облучать всю укороченную жизнь, так сказать - "собственная радиация - всегда с тобой".

Так как при авариях реакторов выбрасываются тяжелые радионуклиды, то...

Тяжелые радионуклиды носятся в воздухе десятилетиями, в очень малой концентрации, но выпасть они могут очень концентрированно, а еще более концентрированно попасть в организм человека с едой. Хрестоматийные примеры: сало, грибы, молоко.

Так что если после ядерной катастрофы фон радиации повысился в пару раз в городе или селе N, расположенном в 3 тысячах километров от места катастрофы, а потом почти вернулся в норму... Лично я бы не спеша переехал в другое место. Но как узнать, а не прошло ли радиоактивное облако и там?

Шарик-то круглый... А я люблю дикие грибы.

(в статье исползованы собственные знания и опыт, а также цифры из Википедии - со всеми вытекающими последствиями)

последние изменения статьи 15мар2011, 22мар2011

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер паропроницаемости и скорости переноса пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 микрорентген в час [мкР/ч] = 0,01 микрозиверты в час [мкЗв/час]

Исходная величина

Преобразованная величина

грей в секунду эксагрей в секунду петагрей в секунду терагрей в секунду гигагрей в секунду мегагрей в секунду килогрей в секунду гектогрей в секунду декагрей в секунду децигрей в секунду сантигрей в секунду миллигрей в секунду микрогрей в секунду наногрей в секунду пикогрей в секунду фемтогрей в секунду аттогрей в секунду рад в секунду джоуль на килограмм в секунду ватт на килограмм зиверт в секунду миллизиверты в год миллизиверты в час микрозиверты в час бэр в секунду рентген в час миллирентген в час микрорентген в час

Подробнее о мощности поглощенной дозы и суммарной мощности дозы ионизирующего излучения

Общие сведения

Излучение - природное явление, которое проявляется в том, что электромагнитные волны или элементарные частицы с высокой кинетической энергией движутся внутри среды. В этом случае среда может быть либо материей, либо вакуумом. Излучение - вокруг нас, и наша жизнь без него немыслима, так как выживание человека и других животных без излучения невозможно. Без излучения на Земле не будет таких необходимых для жизни природных явлений как света и тепла. В этой статье мы обсудим особый тип излучения, ионизирующее излучение или радиацию, которая окружает нас везде. В дальнейшем в этой статье под излучением мы подразумеваем именно ионизирующее излучение.

Источники излучения и его использование

Ионизирующее излучение в среде может возникнуть благодаря либо естественным, либо искусственным процессам. Естественные источники излучения включают солнечное и космическое излучения, а также излучение некоторых радиоактивных материалов, таких как уран. Такое радиоактивное сырье добывают в глубине земных недр и используют в медицине и промышленности. Иногда радиоактивные материалы попадают в окружающую среду в результате аварий на производстве и в отраслях, где используют радиоактивное сырье. Чаще всего это происходит из-за несоблюдения правил безопасности по хранению радиоактивных материалов и работе с ними или из-за отсутствия таких правил.

Стоит заметить, что до недавнего времени радиоактивные материалы не считались опасными для здоровья, и даже наоборот, их использовали как целебные препараты, а также они ценились за их красивое свечение. Урановое стекло - пример радиоактивного материала, используемого в декоративных целях. Это стекло светится флюоресцентным зеленым светом благодаря тому, что в него добавлен оксид урана. Процент содержания урана в этом стекле относительно мал и количество выделяемой им радиации невелико, поэтому урановое стекло на данный момент считают безопасным для здоровья. Из него даже изготавливают стаканы, тарелки, и другую посуду. Урановое стекло ценится за его необычное свечение. Солнце излучает ультрафиолет, поэтому урановое стекло светится и в солнечном свете, хотя это свечение намного более выражено под лампами ультрафиолетового света.

У радиации множество применений - от производства электроэнергии до лечения больных раком. В этой статье мы обсудим, как радиация влияет на ткани и клетки людей, животных и биоматериала, уделяя особое внимание тому, как быстро и насколько сильно происходит поражение облученных клеток и тканей.

Определения

Вначале рассмотрим некоторые определения. Существует множество способов измерять радиацию, в зависимости от того, что именно мы хотим узнать. Например, можно измерить общее количество радиации в среде; можно найти количество радиации, которое нарушает работу биологических тканей и клеток; или количество радиации, поглощенной телом или организмом, и так далее. Здесь мы рассмотрим два способа измерения радиации.

Общее количество радиации в среде, измеряемое на единицу времени, называют суммарной мощностью дозы ионизирующего излучения . Количество радиации, поглощенное организмом за единицу времени, называют мощностью поглощенной дозы . Суммарную мощность дозы ионизирующего излучения легко найти с помощью широко распространенных измерительных приборов, таких как дозиметры , основной частью которых обычно являются счетчики Гейгера . Работа этих приборов более подробно описана в статье об экспозиционной дозе радиации . Мощность поглощенной дозы находят, используя информацию о суммарной мощности дозы и о параметрах предмета, организма, или части тела, которая подвергается излучению. Эти параметры включают массу, плотность и объем.

Радиация и биологические материалы

У ионизирующего излучения очень высокая энергия, и поэтому оно ионизирует частицы биологического материала, включая атомы и молекулы. В результате электроны отделяются от этих частиц, что приводит к изменению их структуры. Эти изменения вызваны тем, что ионизация ослабляет или разрушает химические связи между частицами. Это повреждает молекулы внутри клеток и тканей и нарушает их работу. В некоторых случаях ионизация способствует образованию новых связей.

Нарушение работы клеток зависит от того, насколько радиация повредила их структуру. В некоторых случаях нарушения не влияют на работу клеток. Иногда работа клеток нарушена, но повреждения невелики и организм постепенно восстанавливает клетки в рабочее состояние. В процессе нормальной работы клеток нередко случаются подобные нарушения и клетки сами возвращаются в норму. Поэтому если уровень радиации низок и нарушения невелики, то вполне возможно восстановить клетки до их рабочего состояния. Если же уровень радиации высок, то в клетках происходят необратимые изменения.

При необратимых изменениях клетки либо работают не так, как должны, либо перестают работать вовсе и отмирают. Повреждение радиацией жизненно важных и незаменимых клеток и молекул, например молекул ДНК и РНК, белков или ферментов вызывает лучевую болезнь. Повреждение клеток может также вызвать мутации, в результате которых у детей пациентов, чьи клетки поражены, могут развиться генетические заболевания. Мутации могут также вызвать чрезмерно быстрое деление клеток в организме пациентов - что, в свою очередь, увеличивает вероятность заболевания раком.

Условия, которые усугубляют влияние радиации на организм

Стоит отметить, что некоторые исследования влияния радиации на организм, которые проводили в 50-х - 70-х гг. прошлого века, были неэтичны и даже бесчеловечны. В частности, это исследования, проводимые военными в США и в Советском Союзе. Большая часть этих экспериментов была проведена на полигонах и в специально отведенных зонах для тестирования ядерного оружия, например на полигоне в Неваде, США, на ядерном полигоне на Новой Земле на нынешней территории России, и на Семипалатинском испытательном полигоне на нынешней территории Казахстана. В некоторых случаях эксперименты проводили во время военных учений, как например, во время Тоцких войсковых учений (СССР, на нынешней территории России) и во время военных учений Дезерт Рок в штате Невада, США.

Радиоактивные выбросы во время этих экспериментов принесли вред здоровью военных, а также мирных жителей и животных в окрестных районах, так как меры по защите от облучения были недостаточны или полностью отсутствовали. Во время этих учений исследователи, если можно их так назвать, изучали воздействие радиации на организм человека после атомных взрывов.

С 1946 по 1960-е эксперименты по влиянию радиации на организм проводили также в некоторых американских больницах без ведома и согласия больных. В некоторых случаях такие эксперименты проводили даже над беременными женщинами и детьми. Чаще всего радиоактивное вещество вводили в организм больного во время приема пищи или через укол. В основном главной целью этих экспериментов было проследить, как радиация влияет на жизнедеятельность и на процессы, происходящие в организме. В некоторых случаях исследовали органы (например, мозг) умерших больных, которые при жизни получили дозу облучения. Такие исследования проводили без согласия родных этих больных. Чаще всего больные, над которыми проводили эти эксперименты, были заключенными, смертельно больными пациентами, инвалидами, или людьми из низших социальных классов.

Доза радиации

Нам известно, что большая доза радиации, называемая дозой острого облучения , вызывает угрозу для здоровья, и чем выше эта доза - тем выше риск для здоровья. Нам также известно, что радиация влияет на разные клетки в организме по-разному. Наиболее сильно страдают от радиации клетки, которые подвергаются частому делению, а также те, что не специализированы. Так, например, клетки в зародыше, кровяные клетки, и клетки репродуктивной системы больше всего подвержены отрицательному влиянию радиации. Кожа, кости, и мышечные ткани менее подвержены воздействию, а самое малое влияние радиации - на нервные клетки. Поэтому в некоторых случаях общее разрушительное воздействие радиации на клетки, менее подверженные влиянию радиации меньше, даже если на них действует большее количество радиации, чем на клетки, более подверженные влиянию радиации.

Согласно теории радиационного гормезиса малые дозы радиации, наоборот, стимулируют защитные механизмы в организме, и в результате организм становится крепче, и менее подвержен заболеваниям. Необходимо заметить, что эти исследования на данный момент на начальной стадии, и пока неизвестно, удастся ли получить такие результаты за пределами лаборатории. Сейчас эти эксперименты проводят на животных и неизвестно, происходят ли эти процессы в организме человека. Из этических соображений трудно получить разрешение на такие исследования с участием людей, так как эти эксперименты могут быть опасны для здоровья.

Мощность дозы излучения

Многие ученые считают, что общее количество радиации, которому подвергся организм - не единственный показатель того, насколько сильно облучение влияет на организм. Согласно одной теории, мощность излучения - также важный показатель облучения и чем выше мощность излучения, тем выше облучение и разрушительное влияние на организм. Некоторые ученые, которые исследуют мощность излучения, считают, что при низкой мощности излучения даже длительное воздействие радиации на организм не несет вреда здоровью, или что вред для здоровья незначителен и не нарушает жизнедеятельность. Поэтому в некоторых ситуациях после аварий с утечкой радиоактивных материалов, эвакуацию или переселение жителей не проводят. Эта теория объясняет невысокий вред для организма тем, что организм адаптируется к излучению низкой мощности, и в ДНК и других молекулах происходят восстановительные процессы. То есть, согласно этой теории, воздействие радиации на организм не настолько разрушительно, как если бы облучение происходило с таким же общим количеством радиации но с более высокой мощностью, в более короткий промежуток времени. Эта теория не охватывает облучение на рабочем месте - при облучении на рабочем месте радиацию считают опасной даже при низкой мощности. Стоит также учесть, что исследования в этой области начались сравнительно недавно, и что будущие исследования могут дать совсем другие результаты.

Стоит также отметить, что согласно другим исследованиям, если у животных уже есть опухоль, то даже малые дозы облучения способствуют ее развитию. Это очень важная информация, так как если в будущем будет обнаружено, что такие процессы происходят и в организме человека, то вероятно, что тем, у кого уже есть опухоль, облучение приносит вред даже при малой мощности. С другой стороны, на данный момент мы, наоборот, используем облучение высокой мощности для лечения опухолей, но при этом облучают только участки тела, в которых имеются раковые клетки.

В правилах безопасности при работе с радиоактивными веществами нередко указывают максимально допустимую суммарную дозу радиации и мощность поглощенной дозы излучения. Например, ограничения по облучению, выпущенные Комиссией по ядерному надзору США (United States Nuclear Regulatory Commission) рассчитаны по годовым показателям, а ограничения некоторых других подобных агентств в других странах рассчитаны на помесячные или даже почасовые показатели. Некоторые из этих ограничений и правил разработаны на случай аварий с утечкой радиоактивных веществ в окружающую среду, но часто основной их целью является создание правил безопасности на рабочем месте. Их используют, чтобы ограничить облучение работников и исследователей на атомных электростанциях и на других предприятиях, где работают с радиоактивными веществами, пилотов и экипажей авиакомпаний, медицинских работников, включая врачей радиологов, и других. Более подробную информацию об ионизирующем излучении можно найти в статье поглощенной дозе радиации .

Опасность для здоровья, вызванная радиацией

.
Мощность дозы излучения, мкЗв/ч Опасно для здоровья
>10 000 000 Смертельно опасно: недостаточность органов и смерть в течение нескольких часов
1 000 000 Очень опасно для здоровья: рвота
100 000 Очень опасно для здоровья: радиоактивное отравление
1 000 Очень опасно: немедленно покиньте зараженную зону!
100 Очень опасно: повышенный риск для здоровья!
20 Очень опасно: опасность лучевой болезни!
10 Опасно: немедленно покиньте эту зону!
5 Опасно: как можно быстрее покиньте эту зону!
2 Повышенный риск: необходимо принять меры безопасности, например в самолете на крейсерских высотах

Радиация постоянно воздействует на человека, не только на улице, но и в квартире или в доме. Так называемый «естественный радиационный фон», создаваемый солнцем и космическими лучами, считается безопасным для человеческого здоровья. И все же, радиации следует опасаться, ведь она не наносит вреда только в том случае, если ее уровень не превышает определенных пороговых пределов.

Безопасные дозы радиации: существуют или нет?

Как установил шведский ученый Р. Зиверт еще в 1950 году, облучение не имеет порогового уровня - конкретного значения, при котором у пострадавшего не наблюдаются явные или скрытые повреждения. Даже минимальные дозы радиации способны вызвать генетические и соматические изменения у человека, которые могут не сразу сказаться на его здоровье и остаться незамеченными в течение определенного промежутка времени. Поэтому абсолютно безопасных показателей радиационного излучения не существует, можно говорить лишь о его допустимых пределах.

Кто устанавливает нормы радиации?

В России нормированием и контролированием радиационного облучения населения занимается Госкомсанэпиднадзор. Именно эта организация устанавливает предельные значения радиации и другие требования по ее ограничению, руководствуясь действующим законодательством и следующими документами:

  • НРБ-99 - «Нормы радиационной безопасности»;
  • ОСПОР-99 - «Основные санитарные правила обращения с радиоактивными веществами и др. источниками излучений».

В постановлениях СанПиНа учтены рекомендации международных организаций, занимающихся вопросами радиационной безопасности населения: ВОЗ, ООН, НКДАР, МАГАТЭ, МОТ, АЯЭ, ОЭСР. Введенные нормативы не учитывают естественное излучение, уровень которого в зависимости от региона может колебаться от 0,05 мкЗв/ч и до 0,2 мкЗв/ч, а также на внутреннее облучение человека, возникающего за счет содержащегося в клетках организма природного калия.

Для чего нормируют радиационное излучение?

Основная цель нормирования природного и техногенного облучения - охрана здоровья всего населения и людей, которые в силу своей профессии постоянно работают с источниками радиации. Принимаемые меры обеспечивают безопасность человека, и снижают до минимума возможность получения им как явных облучений в виде ожогов, лучевой болезни и опухолей, так и скрытых последствий - мутирования хромосом и появления у потомства генетических заболеваний.

Какие нормы в радиации существуют?

Радиационное облучение возникает по причине как внешнего, так и внутреннего заражения организма радионуклидами. Поступая вместе с пищей, водой и воздухом, они вместе с кровью разносятся по всему организму, накапливаются в тканях и отдельных органах, вызывая их повреждения. В связи с этим, введено новое понятие - поглощенная доза, которая измеряет среднее количество радионуклидов, поглощенных организмом человека. Для основного населения она не должны превышать:

  • за один год - 1 мЗв;
  • за всю жизнь (70 лет) - 70 мЗв.

Если рассчитать мощность облучения в час, разделив годовую норму на количество часов в году, получится 0,57 мкЗв/ч. Но это верхний предел, для человека наиболее безопасный уровень должен быть в два раза меньше - до 0,2 мкЗВ/ч.

СанПиН: какие нормы установлены?

Свыше 70% радиации поступает в организм человека через органы дыхания и пищеварения, вызывая серьезные проблемы со здоровьем. В связи с этим, введены нормативы СанПиН, которые ограничивают содержание радионуклидов в пище, воде и воздухе. Рассмотрим их подробней:

1. Помещения.

Жилое здание считается безопасным, если в воздухе его помещений фиксируется такие показатели:

  • мощность гамма-излучения - 0,25-0,4 мкЗв/час с учетом естественного радиационного фона, характерного для данной местности;
  • суммарная доза торона и радона - не выше 200 Бк/куб.м. в год.

При превышении установленных значений проводятся меры по снижению радиационного облучения. Если они не дают результата, жильцы переселяются, а загрязненное помещение перепрофилируется, в крайнем случае - идет под снос.

Нормативы СанПиН ограничивают содержание урана, тория и калия-40 в стройматериалах, используемых для возведения жилья. Суммарная доза радиационного излучения стеновых и отделочных материалов, изготовленных с применением природных горных пород, не должна превышать 370 Бк/кг.

Если выбирается участок под жилищную застройку, уровень гамма-излучения рядом с поверхностью грунта должен быть не более 0,3 мкЗв/ч, а потоков радона - не выше 80 мБк/(кв. м*с).

2. Питьевая вода.

В питьевой воде нормируется содержание альфа- и бета-частиц как техногенного, так и естественного происхождения. Если суммарное излучение ниже 2,2 Бк/кг, то вода считается безопасной и ее дальнейшее гигиеническое исследование не проводится. В ином случае замеряется активность конкретных радионуклидов - их перечень установлен санитарным законодательством. Отдельно рассматривается содержание радона в воде - не более 60 Бк/ч.

Рентгенологическим видам обследования в медицине по-прежнему отводится ведущая роль. Иногда без данных невозможно подтвердить или поставить правильный диагноз. С каждым годом методики и рентгенотехника совершенствуются, усложняются, становятся более безопасными но, тем не менее, вред от излучения остается. Минимизация негативного влияния диагностического облучения – приоритетная задача рентгенологии.

Наша задача – на доступном любому человеку уровне разобраться в существующих цифрах доз излучения, единицах их измерения и точности. Также, коснемся темы реальности возможных проблем со здоровьем, которые может вызвать этот вид медицинской диагностики.

Рекомендуем прочитать:

Что такое рентгеновское излучение

Рентгеновское излучение представляет собой поток электромагнитных волн с длиной, находящейся в диапазоне между ультрафиолетовым и гамма-излучением. Каждый вид волн имеет свое специфическое влияние на организм человека.

По своей сути рентгеновское излучение является ионизирующим. Оно обладает высокой проникающей способностью. Энергия его представляет опасность для человека. Вредность излучения тем выше, чем больше получаемая доза.

О вреде воздействия рентгеновского излучения на организм человека

Проходя через ткани тела человека, рентгеновские лучи ионизирует их, изменяя структуру молекул, атомов, простым языком – «заряжая» их. Последствия полученного облучения могут проявиться в виде заболеваний у самого человека (соматические осложнения), или у его потомства (генетические болезни).

Каждый орган и ткань по-разному подвержены влиянию излучения. Поэтому созданы коэффициенты радиационного риска, ознакомиться с которыми можно на картинке. Чем больше значение коэффициента, тем выше восприимчивость ткани к действию радиации, а значит и опасность получения осложнения.

Наиболее подвержены воздействию радиации кроветворные органы – красный костный мозг.

Самое частое осложнение, появляющееся в ответ на облучение, – патологии крови.

У человека возникают:

  • обратимые изменения состава крови после незначительных величин облучения;
  • лейкемия – уменьшение количества лейкоцитов и изменение их структуры, приводящая к сбоям деятельности организма, его уязвимости, снижению иммунитета;
  • тромбоцитопения – уменьшение содержания тромбоцитов, клеток крови, отвечающих за свертываемость. Этот патологический процесс может вызывать кровотечения. Состояние усугубляется повреждением стенок сосудов;
  • гемолитические необратимые изменения в составе крови (распад эритроцитов и гемоглобина), в результате воздействия мощных доз радиации;
  • эритроцитопения – снижение содержания эритроцитов (красных кровяных клеток), вызывающее процесс гипоксии (кислородного голодания) в тканях.

Друг ие патологи и :

  • развитие злокачественных заболеваний;
  • преждевременное старение;
  • повреждение хрусталика глаза с развитием катаракты.

Важно : Опасным рентгеновское излучение становится в случае интенсивности и длительности воздействия. Медицинская аппаратура применяет низкоэнергетическое облучение малой длительности, поэтому при применении считается относительно безвредной, даже если обследование приходится повторять многократно.

Однократное облучение, которое получает пациент при обычной рентгенографии, повышает риск развития злокачественного процесса в будущем примерно на 0,001%.

Обратите внимание : в отличие от воздействия радиоактивных веществ, вредоносное действие лучей прекращается сразу же, после выключения аппарата.

Лучи не могут накапливаться и образовывать радиоактивные вещества, которые затем будут являться самостоятельными источниками излучения. Поэтому после рентгена не следует принимать никаких мер для «вывода» радиации из организма.

В каких единицах измеряются дозы полученной радиации

Человеку, далекому от медицины и рентгенологии, тяжело разобраться в обилии специфической терминологии, цифрах доз и единицах, в которых они измеряются. Попробуем привести информацию к понятному минимуму.

Итак, в чем же измеряется доза рентгеновского излучения? Единиц измерения радиации много. Мы не будет подробно разбирать все. Беккерель, кюри, рад, грэй, бэр – вот список основных величин радиации. Применяются они в разных системах измерения и областях радиологии. Остановимся только на практически значимых в рентгендиагностике.

Нас больше будут интересовать рентген и зиверт.

Характеристика уровня проникающей радиации, излучаемой рентгеновским аппаратом, измеряется в единице под названием «рентген» (Р).

Чтобы оценить действие радиации на человека, введено понятие эквивалентной поглощенной дозы (ЭПД). Помимо ЭПД существуют и другие виды доз – все они представлены в таблице.

Эквивалентная поглощенная доза (на картинке – Эффективная эквивалентная доза) представляет собой количественную величину энергии, которую поглощает организм, но при этом учитывается биологическая реакция тканей тела на излучение. Измеряется она в зивертах (Зв).

Зиверт приблизительно сопоставим с величиной 100 рентген.

Естественный фон облучения и дозы, выдаваемые медицинской рентгенаппаратурой, намного ниже этих значений, поэтому для их измерения используются величины тысячной доли (милли) или одной миллионной доли (микро) Зиверта и Рентгена.

В цифрах это выглядит так:

  • 1 зиверт (Зв) = 1000 миллизиверт (мЗв) = 1000000 микрозиверт (мкЗв)
  • 1 рентген (Р) = 1000 миллирентген (мР) = 1000000 миллирентген (мкР)

Чтобы оценить количественную часть излучения, получаемого за единицу времени (час, минуту, секунду) используют понятие – мощность дозы, измеряемую в Зв/ч (зиверт-час), мкзв/ч (микрозиверт-ч), Р/ч (рентген-час), мкр/ч (микрорентген-час). Аналогично – в минутах и секундах.

Можно еще проще:

  • общее излучение измеряется в рентгенах;
  • доза, получаемая человеком – в зивертах.

Дозы облучения, полученные в зивертах, накапливаются в течение всей жизни. Теперь попробуем выяснить, сколько же получает человек этих самых зивертов.

Естественный радиационный фон

Уровень естественной радиации везде свой, зависит он от следующих факторов:

  • высоты над уровнем моря (чем выше, тем жестче фон);
  • геологической структуры местности (почва, вода, горные породы);
  • внешних причин – материала здания, наличия рядом предприятий, дающих дополнительную лучевую нагрузку.

Обратите внимание: наиболее приемлемым считается фон, при котором уровень радиации не превышает 0,2 мкЗв/ч (микрозиверт-час), или 20 мкР/ч (микрорентген-час)

Верхней границей нормы считается величина до 0,5 мкЗв/ч = 50 мкР/ч.

В течение нескольких часов облучения допускается доза до 10 мкЗв/ч = 1мР/ч.

Все виды рентгенологических исследований вписываются в безопасные нормативы лучевых нагрузок, измеряемых в мЗв (миллизивертах).

Допустимые дозы облучения для человека, накопленные за жизнь не должны выходить за пределы 100-700 мЗв. Фактические значения облучения людей, проживающих в высокогорье, могут быть выше.

В среднем за год человек получает дозу равную 2-3 мЗв.

Она суммируется из следующих составляющих:

  • радиация солнца и космических излучений: 0,3 мЗв – 0,9 мЗв;
  • почвенно-ландшафтный фон: 0,25 – 0,6 мЗв;
  • излучение жилищных материалов и строений: 0,3 мЗв и выше;
  • воздух: 0,2 – 2 мЗв;
  • пища: от 0,02 мЗв;
  • вода: от 0,01 – 0,1 мЗв:

Помимо внешней получаемой дозы радиации, в организме человека накапливаются и собственные отложения радионуклидных соединений. Они также представляют источник ионизирующих излучений. К примеру, в костях этот уровень может достигать значений от 0,1 до 0,5 мЗв.


Кроме того, происходит облучение калием-40, скапливающимся в организме. И это значение достигает 0,1 – 0,2 мЗв.

Обратите внимание : для измерения радиационного фона можно пользоваться обычным дозиметром, например РАДЭКС РД1706, который дает показания в зивертах.

Вынужденные диагностические дозы рентген облучения

Величина эквивалентной поглощенной дозы при каждом рентгенобследовании может значительно отличаться в зависимости от вида обследования. Доза облучения также зависит от года выпуска медицинской аппаратуры, рабочей нагрузки на него.

Важно : современная рентгеноаппаратура дает излучения в десятки раз более низкие, чем предшествующая. Можно сказать так: новейшая цифровая рентгенотехника безопасна для человека.

Но все же попытаемся привести усредненные цифры доз, которые может получать пациент. Обратим внимание на различие данных, выдаваемых цифровой и обычной рентгеноаппаратурой:

  • цифровая флюорография: 0,03-0,06 мЗв, (самые современные цифровые аппараты дают излучение в дозе от 0,002 мЗв, что в 10 раз ниже их предшественников);
  • плёночная флюорография: 0,15-0,25 мЗв, (старые флюорографы: 0,6-0,8 мЗв);
  • рентгенография органов грудной полости: 0,15-0,4 мЗв.;
  • дентальная (зубная) цифровая рентгенография: 0,015-0,03 мЗв., обычная: 0,1-0,3 мзВ.

Во всех перечисленных случаях речь идет об одном снимке. Исследования в дополнительных проекциях увеличивают дозу пропорционально кратности их проведения.

Рентгеноскопический метод (предусматривает не фотографирование области тела, а визуальный осмотр рентгенологом на экране монитора) дает значительно меньшее излучение за единицу времени, но суммарная доза может быть выше из-за длительности процедуры. Так, за 15 минут рентгеноскопии органов грудной клетки общая доза полученного облучения может составить от 2 до 3,5 мЗв.

Диагностика желудочно-кишечного тракта – от 2 до 6 мЗв.

Компьютерная томография применяет дозы от 1-2 мЗв до 6-11 мЗв, в зависимости от исследуемых органов. Чем более современным является рентгеноаппарат, тем более низкие он дает дозы.

Отдельно отметим радионуклидные методы диагностики. Одна процедура, основанная на радиофармпрепарате, дает суммарную дозу от 2 до 5 мЗв.

Сравнение эффективных доз радиации, полученных во время наиболее часто используемых в медицине диагностических видов исследований, и доз, ежедневно получаемых человеком из окружающей среды, представлено в таблице.

Процедура Эффективная доза облучения Сопоставимо с природным облучением, полученным за указанный промежуток времени
Рентгенография грудной клетки 0,1 мЗв 10 дней
Флюорография грудной клетки 0,3 мЗв 30 дней
Компьютерная томография органов брюшной полости и таза 10 мЗв 3 года
Компьютерная томография всего тела 10 мЗв 3 года
Внутривенная пиелография 3 мЗв 1 год
Рентгенография желудка и тонкого кишечника 8 мЗв 3 года
Рентгенография толстого кишечника 6 мЗв 2 года
Рентгенография позвоночника 1,5 мЗв 6 месяцев
Рентгенография костей рук или ног 0,001 мЗв менее 1 дня
Компьютерная томография – голова 2 мЗв 8 месяцев
Компьютерная томография – позвоночник 6 мЗв 2 года
Миелография 4 мЗв 16 месяцев
Компьютерная томография – органы грудной клетки 7 мЗв 2 года
Микционная цистоуретрография 5-10лет: 1,6 мЗв
Грудной ребенок: 0,8 мЗв
6 месяцев
3 месяца
Компьютерная томография – череп и околоносовые пазухи 0,6 мЗв 2 месяца
Денситометрия костей (определение плотности) 0,001 мЗв менее 1 дня
Галактография 0,7 мЗв 3 месяца
Гистеросальпингография 1 мЗв 4 месяца
Маммография 0,7 мЗв 3 месяца

Важно: Магнитно-резонансная томография не использует рентгеновское облучение. При этом виде исследования на диагностируемую область направляется электромагнитный импульс, возбуждающий атомы водорода тканей, затем измеряется вызывающий их отклик в сформированном магнитном поле с уровнем высокой напряженности. Некоторые люди ошибочно причисляют этот метод к рентгеновским.

Радиацией в общем смысле называют распространение энергии в виде элементарных частиц и квантовых потоков. Выделяют световое (видимое невооруженным глазом), инфракрасное, ультрафиолетовое и ионизирующее излучение.

Для безопасности жизнедеятельности человека наибольший интерес представляет ионизирующая радиация, которая способствует образованию свободных радикалов в клетках живого организма, что запускает процесс разрушения белков, гибели или перерождения клеток.

Эти процессы могут стать причиной смерти живого организма. Именно поэтому под понятием “радиация” чаще всего подразумевается ионизирующее излучение.

Все ли виды радиации опасны?

Радиационное облучение не всегда смертельно и губительно, как принято полагать. В некоторых случаях нестабильность изотопов различных элементов используется во благо, в частности, в селекции растений и животных, медицине, энергетике и народном хозяйстве.

Радиация и радиоактивность - одно и то же?

Радиация и радиоактивность - понятия схожие, но совсем не тождественные. Радиацией называют свободные потоки энергии, которые существуют в пространстве до тех пор, пока не поглотятся каким-либо предметом. Радиоактивность же - это способность предмета или вещества поглощать излучение, становясь источником радиации.

Виды излучения и проникающая способность

Различают несколько видов радиационного излучения, среди наиболее значимых выделяют следующие:

  1. Альфа-излучение - поток положительных частиц со сравнительно большой массой, они обладают мощной ионизацией и представляют серьезную опасность при попадании в организм через ЖКТ, но при этом задерживаются даже небольшими преградами и не проникают под кожу.
  2. Бета-излучение - мельчайшие частицы с несколько большей проникающей способностью. Защитить от такого излучения может тонкий слой алюминия или несколько сантиметров дерева.
  3. Гамма-излучение и подобное ему рентгеновское - поток нейтрально заряженных частиц, имеющих высокую проникающую способность, представляет наибольшую опасность для человека. Защитить от облучения могут материалы с тяжелыми ядрами, и для этого понадобится слой в несколько метров.

Естественная и искусственная радиация

Излучение может быть как естественным, так и появляться вследствие деятельности человека. В природе мощными источниками радиации являются Солнце и процесс распада некоторых элементов в составе земной коры. Даже в организме человека в норме имеются вещества, которые создают персональный радиационный фон.

Искусственная радиация является следствием деятельности атомных электростанций, разработки и применения любой техники, в которой используются ядерные реакторы, а также использования радиоактивных изотопов в медицине, добычи элементов с нестабильными атомными ядрами, проведения испытаний, захоронения опасных отходов и утечки ядерного топлива.

Внешнее и внутреннее облучение

Естественный радиационный фон обуславливается наличием внешних и внутренних источников радиации. Основные пути проникновения радиации в организм человека:

  • через пищеварительный тракт, что обусловлено условиями жизни и характером деятельности человека;
  • через слизистые оболочки и кожу, что также определяется местоположением и может быть связано с особенностями местности проживания (влияют близость искусственных источников радиации, географическая широта и высота над уровнем моря) и строительными материалами, содержащими радиоактивные вещества, из которых построены объекты жилищного фонда и инфраструктуры.

Допустимые и смертельные дозы радиации

Естественный уровень радиации зависит от местности и условий жизни человека. Измеряется величина в дозах, получаемых организмом за определенный промежуток времени (как правило, за один час или год):

  • Экспозиционная, отражающая степень ионизации при гамма- или рентгеновском излучении, основная единица измерения - рентген.
  • Поглощенная веществом, предметом или организмом доза измеряется в “греях”.
  • Эффективная (допустимая) доза определяется индивидуально для каждого органа.
  • Эквивалентная доза радиационного облучения рассчитывается согласно коэффициентам и зависит от вида излучения.

Нормы радиационного фона

В среднем в норме и не несет опасности для населения величина излучения около двадцати микрорентген в час, но показатель может значительно различаться в зависимости от особенностей исследуемой территории.

Предельная граница радиации (ПДК - предельно допустимая концентрация) - показатель, составляющий примерно 0.5 мкЗв/час (или 50 мкР/ч). Однако при уменьшении сроков воздействия радиоактивного излучения до нескольких часов, человек может вынести и такие дозы облучения, как 10 мкЗв/ч (или 1 мкР в час).

Находясь в зоне радиационного загрязнения или воздействия радиации, например, при медицинских исследованиях, несколько минут максимальный допустимый уровень облучения составляет до нескольких миллизивертов в час.

Проникающая радиация накапливается в организме. Нормы определяют, что для полноценного функционирования организма и сохранения здоровья на должном уровне накопленное количество радиации за всю жизнь не должно превышать предела от 100 до 700 мЗв.

При этом, в поле верхних значений допустимые дозы будут находиться для жителей высокогорных районов и территорий с повышенной радиоактивностью.

Суммарно посчитать воздействие радиации в год поможет таблица примерных доз облучения при различных видах деятельности. Например, при флюорографии полученная доза составляет 0,06 мЗв, а рентгеновский луч дает 30% и 3% облучения от годовой дозы при рентгене (пленочном и цифровом соответственно) органов грудной клетки.

Радиационное заражение

Радиационным (радиоактивным) заражением считается ситуация, которая являет собой опасность для здоровья и даже жизни людей, проживающих на территориях выпадения радиоактивных веществ, а также в местностях, близких к эпицентру техногенных аварий. Нормальный радиационный фон нарушается при утечках во время транспортировки и хранения радиоактивных отходов, авариях на атомных электростанциях или в результате случайных или преднамеренных утерь радиоисточников.

Основными отравляющими веществами являются йод-131, стронций, цезий, кобальт и америций. Минимальный период полураспада радиоактивных веществ составляет около восьми суток, максимальный – более четырехсот лет. При техногенных авариях дозы облучения снижаются до допустимого уровня в среднем за 30-50 лет, хотя все зависит от характера выброса.

Так, например, нахождение в зоне отчуждения вокруг Чернобыльской АЭС в течение 10 часов сегодня эквивалентно перелету, а в Хиросиме и Нагасаки, которые испытали на себе воздействие ядерной бомбы, на данный момент могут жить люди.

Опасные дозы облучения

  1. 50%-ая вероятностью летального исхода наступает при 3-4 Гр проникающей радиации, а при 7 Гр и более смерть наступает в 99% случаев;
  2. Облучение свыше 10 Гр уже может считаться смертельной для человека, лучевая болезнь в этом случае убивает за 2-3 недели.
  3. Смертельная доза радиации для человека составляет 15 Гр (смерть наступает за 1-5 суток);

Симптомы и степени тяжести заражения

В клинической картине лучевой болезни выделяют четыре степени тяжести:

  • поражение первой степени возникает при облучении в пределах 2 Гр;
  • средняя тяжесть характерна для дозы до 4 Гр;
  • при тяжелой (третьей) степени облучение колеблется в пределах 4-6 Гр;
  • доза радиации при лучевой болезни крайней тяжести составляет более 6 Гр.

Кроме того, врачи говорят о лучевой травме, протекающей без каких-либо характерных симптомов, если пострадавший получил облучение менее 1 Гр.

  • Симптомы первой степени лучевой болезни проявляются в головных болях, изменении аппетита, раздражительности и нарушениях сна. У пострадавших, как правило, отмечаются раздражение слизистых, расстройства ЖКТ и повышенная потливость. Выздоровление наступает через один-два месяца, если воздействие радиации прекратилось.
  • Поражение средней степени тяжести характеризуется усугублением существующих симптомов, патологическими изменениями внутренних органов и ЦНС, возникновением трофических язв, а также многочисленными осложнениями, которые связаны с ослаблением иммунитета. Больные часто так и не выздоравливают полностью, а врачам лишь удается добиться ремиссии с периодическими обострениями.
  • Лучевая болезнь третьей степени отличается необратимыми изменениями в работе большинства органов и систем, деградацией тканей и частыми кровотечениями. Состояние представляет значительную опасность для жизни пациента, быстро прогрессирует и в большинстве случаев заканчивается летальным исходом.
  • Признаки радиационного поражения крайней тяжести мало изучены в медицинской практике, т.к. настолько серьезная форма лучевой болезни встречается очень редко. Современные методы диагностики и лечения позволяют выявить и остановить болезнь на тех этапах, когда оказывать помощь пострадавшему еще целесообразно. При этом стойкое улучшение состояния пациента наступает, как правило, через два-три года после прекращения воздействия радиации на организм.

← Вернуться

×
Вступай в сообщество «passport13.com»!
ВКонтакте:
Я уже подписан на сообщество «passport13.com»