Типы оптических волокон. Многомодовое и одномодовое волокно

Подписаться
Вступай в сообщество «passport13.com»!
ВКонтакте:

Ведут свою историю с 1960 года, когда был изобретен первый лазер. При этом само оптическое волокно появилось только 10 лет спустя, и сегодня именно оно является физической основой современного интернета.

Оптические волокна, применяемые для передачи данных, имеют принципиально схожее строение. Светопередающая часть волокна (ядро, сердечник или сердцевина) находится в центре, вокруг него располагается демпфер (который иногда называют оболочкой). Задача демпфера - создать границу раздела сред и не дать излучению покинуть пределы ядра.

И ядро, и демпфер изготавливаются из кварцевого стекла, при этом показатель преломления ядра несколько выше, чем показатель преломления демпфера, чтобы реализовать явление полного внутреннего отражения. Для этого достаточно разницы в сотые доли - например, ядро может иметь показатель преломления n 1 =1.468, а демпфер - значение n 2 =1.453.

Диаметр ядра одномодовых волокон составляет 9 мкм, многомодовых - 50 или 62.5 мкм, при этом диаметр демпфера у всех волокон одинаков и составляет 125 мкм. Строение световодов в масштабе показано на иллюстрации:

Ступенчатый профиль показателя преломления (step - index fiber ) - самый простой для изготовления световодов. Он приемлем для одномодовых волокон, где условно считается, что «мода» (маршрут распространения света в ядре) одна. Однако для многомодовых волокон со ступенчатым показателем преломления характерна высокая дисперсия, вызванная наличием большого количества мод, что приводит к рассеиванию, «расползанию» сигнала, и в итоге ограничивает расстояние, на котором возможна работа приложений. Минимизировать дисперсию мод позволяет градиентный показатель преломления. Для многомодовых систем настоятельно рекомендуется использовать именно волокна с градиентным показателем преломления (graded - index fiber ) , в которых переход от ядра к демпферу не имеет «ступеньки», а происходит постепенно.

Основной параметр, характеризующий дисперсию и, соответственно, способность волокна поддерживать работу приложений на определенные расстояния - коэффициент широкополосности. В настоящее время многомодовые волокна делятся по этому показателю на четыре класса, от OM1 (которые не рекомендуется применять в новых системах) до наиболее производительного класса OM4.

Класс волокна

Размер ядра/демпфера, мкм

Коэффициент широкополосности,
режим OFL, МГц·км

Примечание

850 нм

1300 нм

Применяется для расширения ранее установленных систем. Использовать в новых системах не рекомендуется.

Применяется для поддержки приложений с производительностью до 1 Гбит/с на расстоянии до 550 м.

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 2000 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 300 м.

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 4700 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 550 м.

Одномодовые волокна делятся на классы OS1 (обычные световоды, используемые для передачи на длинах волн либо 1310 нм, либо 1550 нм) и OS2, которые можно применять для широкополосной передачи во всем диапазоне от 1310 нм до 1550 нм, поделенном на каналы передачи, или в даже более широком спектре, например, от 1280 до 1625 нм. На начальном этапе выпуска волокна OS2 маркировались обозначением LWP (Low Water Peak ) , чтобы подчеркнуть, что в них минимизированы пики поглощения между окнами прозрачности. Широкополосная передача в наиболее производительных одномодовых волокнах обеспечивает скорости передачи свыше 10 Гбит/с.

Одномодовый и многомодовый волоконно-оптический кабель: правила выбора

Учитывая описанные характеристики многомодовых и одномодовых волокон, можно привести рекомендации по выбору типа волокна в зависимости от производительности приложения и расстояния, на котором оно должно работать:

    для скоростей свыше 10 Гбит/с выбор в пользу одномодового волокна независимо от расстояния

    для 10-гигабитных приложений и расстояний свыше 550 м выбор также в пользу одномодового волокна

    для 10-гигабитных приложений и расстояний до 550 м также возможно применение многомодового волокна OM4

    для 10-гигабитных приложений и расстояний до 300 м также возможно применение многомодового волокна OM3

    для 1-гигабитных приложений и расстояний до 600-1100 м возможно применение многомодового волокна OM4

    для 1-гигабитных приложений и расстояний до 600-900 м возможно применение многомодового волокна OM3

    для 1-гигабитных приложений и расстояний до 550 м возможно применение многомодового волокна OM2

Стоимость оптического световода во многом определяется диаметром ядра, поэтому многомодовый кабель при прочих равных обходится дороже одномодового. При этом активное оборудование для одномодовых систем из-за использования в них мощных лазерных источников (например, лазер Фабри-Перо) стоит существенно дороже активки для многомода, где используются либо относительно недорогие лазеры поверхностного излучения VCSEL либо еще более дешевые светодиодные источники. При оценке стоимости системы необходимо учитывать затраты как на кабельную инфраструктуру, так и на активное оборудование, причем последние могут оказаться существенно больше.

На сегодняшний день сложилась практика выбора оптического кабеля в зависимости от сферы использования. Одномодовое волокно используется:

    в морских и трансокеанских кабельных линиях связи;

    в наземных магистральных линиях дальней связи;

    в провайдерских линиях, линиях связи между городскими узлами, в выделенных оптических каналах большой протяженности, в магистралях к оборудованию операторов мобильной связи;

    в системах кабельного телевидения (в первую очередь OS2, широкополосная передача);

    в системах GPON с доведением волокна до оптического модема, размещаемого у конечного пользователя;

    в СКС в магистралях длиной более 550 м (как правило, между зданиями);

    в СКС, обслуживающих центры обработки данных, независимо от расстояния.

Многомодовое волокно в основном используется:

    в СКС в магистралях внутри здания (где, как правило, расстояния укладываются в 300 м) и в магистралях между зданиями, если расстояние не превышает 300-550 м;

    в горизонтальных сегментах СКС и в системах FTTD (fiber - to - the - desk ), где пользователям устанавливаются рабочие станции с многомодовыми оптическими сетевыми картами;

    в центрах обработки данных в дополнение к одномодовому волокну;

    во всех случаях, где расстояние позволяет применять многомодовые кабели. Хотя сами кабели обходятся дороже, экономия на активном оборудовании покрывает эти затраты.

Можно ожидать, что в ближайшие годы волокно OS2 постепенно вытеснит OS1 (его снимают с производства), а в многомодовых системах исчезнут волокна 62.5/125 мкм, поскольку их полностью вытеснят световоды 50 мкм, вероятно, классов OM3-OM4.

Тестирование одномодовых и многомодовых оптических кабелей

После монтажа все установленные оптические сегменты подлежат тестированию. Только измерения, проведенные специальным оборудованием, позволяют гарантировать характеристики установленных линий и каналов. Для сертификации СКС применяются приборы с квалифицированными источниками излучения на одном конце линии и измерителями на другом. Такое оборудование производят компании Fluke Networks, JDSU, Psiber; все подобные устройства имеют предустановленные базы допустимых оптических потерь в соответствии с телекоммуникационными стандартами TIA/EIA, ISO/IEC и другими. Более протяженные оптические линии проверяют с помощью оптических рефлектометров , имеющих соответствующий динамический диапазон и разрешающую способность.

На этапе эксплуатации все установленные оптические сегменты требуют бережного обращения и регулярного использования специальных чистящих салфеток, палочек и других средств очистки .

Нередки случаи, когда проложенные кабели повреждают, например, при копке траншей или при выполнении ремонтных работ внутри зданий. В этом случае для поиска места сбоя необходим рефлектометр или другой диагностический прибор, основанный на принципах рефлектометрии и показывающий расстояние до точки сбоя (подобные модели есть у производителей Fluke Networks, EXFO, JDSU, NOYES (FOD), Greenlee Communication и других).

Встречающиеся на рынке бюджетные модели предназначены в основном для локализации повреждений (плохих сварок, обрывов, макроизгибов и т д). Зачастую они не в состоянии провести детальную диагностику оптической линии, выявить все её неоднородности и профессионально создать отчет. Кроме этого, они менее надежны и долговечны.

Качественное оборудование - напротив надежно, способно диагностировать ВОЛС в мельчайших деталях, составить корректную таблицу событий, сгенерировать редактируемый отчет. Последнее крайне важно для паспортизации оптических линий, потому как иногда встречаются сварные соединения с настолько низкими потерями, что рефлектометр не в состоянии определить такое соединение. Но сварка ведь всё равно есть, и ее необходимо отобразить в отчёте. В этом случае программное обеспечение позволяет принудительно установить на рефлектограмме событие и в ручном режиме измерить потери на нем.

Многие профессиональные приборы также имеют возможность расширения функциональных возможностей за счет добавления опций: видеомикроскопа для инспектирования торцов волокон, источника лазерного излучения и измерителя мощности, оптического телефона и др.

Ведут свою историю с 1960 года, когда был изобретен первый лазер. При этом само оптическое волокно появилось только 10 лет спустя, и сегодня именно оно является физической основой современного интернета.

Оптические волокна, применяемые для передачи данных, имеют принципиально схожее строение. Светопередающая часть волокна (ядро, сердечник или сердцевина) находится в центре, вокруг него располагается демпфер (который иногда называют оболочкой). Задача демпфера - создать границу раздела сред и не дать излучению покинуть пределы ядра.

И ядро, и демпфер изготавливаются из кварцевого стекла, при этом показатель преломления ядра несколько выше, чем показатель преломления демпфера, чтобы реализовать явление полного внутреннего отражения. Для этого достаточно разницы в сотые доли - например, ядро может иметь показатель преломления n 1 =1.468, а демпфер - значение n 2 =1.453.

Диаметр ядра одномодовых волокон составляет 9 мкм, многомодовых - 50 или 62.5 мкм, при этом диаметр демпфера у всех волокон одинаков и составляет 125 мкм. Строение световодов в масштабе показано на иллюстрации:

Ступенчатый профиль показателя преломления (step - index fiber ) - самый простой для изготовления световодов. Он приемлем для одномодовых волокон, где условно считается, что «мода» (маршрут распространения света в ядре) одна. Однако для многомодовых волокон со ступенчатым показателем преломления характерна высокая дисперсия, вызванная наличием большого количества мод, что приводит к рассеиванию, «расползанию» сигнала, и в итоге ограничивает расстояние, на котором возможна работа приложений. Минимизировать дисперсию мод позволяет градиентный показатель преломления. Для многомодовых систем настоятельно рекомендуется использовать именно волокна с градиентным показателем преломления (graded - index fiber ) , в которых переход от ядра к демпферу не имеет «ступеньки», а происходит постепенно.

Основной параметр, характеризующий дисперсию и, соответственно, способность волокна поддерживать работу приложений на определенные расстояния - коэффициент широкополосности. В настоящее время многомодовые волокна делятся по этому показателю на четыре класса, от OM1 (которые не рекомендуется применять в новых системах) до наиболее производительного класса OM4.

Класс волокна

Размер ядра/демпфера, мкм

Коэффициент широкополосности,
режим OFL, МГц·км

Примечание

850 нм

1300 нм

Применяется для расширения ранее установленных систем. Использовать в новых системах не рекомендуется.

Применяется для поддержки приложений с производительностью до 1 Гбит/с на расстоянии до 550 м.

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 2000 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 300 м.

Волокно оптимизировано для применения лазерных источников. В режиме RML коэффициент широкополосности на длине волны 850 нм составляет 4700 МГц·км. Волокно применяется для поддержки приложений с производительностью до 10 Гбит/с на расстоянии до 550 м.

Одномодовые волокна делятся на классы OS1 (обычные световоды, используемые для передачи на длинах волн либо 1310 нм, либо 1550 нм) и OS2, которые можно применять для широкополосной передачи во всем диапазоне от 1310 нм до 1550 нм, поделенном на каналы передачи, или в даже более широком спектре, например, от 1280 до 1625 нм. На начальном этапе выпуска волокна OS2 маркировались обозначением LWP (Low Water Peak ) , чтобы подчеркнуть, что в них минимизированы пики поглощения между окнами прозрачности. Широкополосная передача в наиболее производительных одномодовых волокнах обеспечивает скорости передачи свыше 10 Гбит/с.

Одномодовый и многомодовый волоконно-оптический кабель: правила выбора

Учитывая описанные характеристики многомодовых и одномодовых волокон, можно привести рекомендации по выбору типа волокна в зависимости от производительности приложения и расстояния, на котором оно должно работать:

    для скоростей свыше 10 Гбит/с выбор в пользу одномодового волокна независимо от расстояния

    для 10-гигабитных приложений и расстояний свыше 550 м выбор также в пользу одномодового волокна

    для 10-гигабитных приложений и расстояний до 550 м также возможно применение многомодового волокна OM4

    для 10-гигабитных приложений и расстояний до 300 м также возможно применение многомодового волокна OM3

    для 1-гигабитных приложений и расстояний до 600-1100 м возможно применение многомодового волокна OM4

    для 1-гигабитных приложений и расстояний до 600-900 м возможно применение многомодового волокна OM3

    для 1-гигабитных приложений и расстояний до 550 м возможно применение многомодового волокна OM2

Стоимость оптического световода во многом определяется диаметром ядра, поэтому многомодовый кабель при прочих равных обходится дороже одномодового. При этом активное оборудование для одномодовых систем из-за использования в них мощных лазерных источников (например, лазер Фабри-Перо) стоит существенно дороже активки для многомода, где используются либо относительно недорогие лазеры поверхностного излучения VCSEL либо еще более дешевые светодиодные источники. При оценке стоимости системы необходимо учитывать затраты как на кабельную инфраструктуру, так и на активное оборудование, причем последние могут оказаться существенно больше.

На сегодняшний день сложилась практика выбора оптического кабеля в зависимости от сферы использования. Одномодовое волокно используется:

    в морских и трансокеанских кабельных линиях связи;

    в наземных магистральных линиях дальней связи;

    в провайдерских линиях, линиях связи между городскими узлами, в выделенных оптических каналах большой протяженности, в магистралях к оборудованию операторов мобильной связи;

    в системах кабельного телевидения (в первую очередь OS2, широкополосная передача);

    в системах GPON с доведением волокна до оптического модема, размещаемого у конечного пользователя;

    в СКС в магистралях длиной более 550 м (как правило, между зданиями);

    в СКС, обслуживающих центры обработки данных, независимо от расстояния.

Многомодовое волокно в основном используется:

    в СКС в магистралях внутри здания (где, как правило, расстояния укладываются в 300 м) и в магистралях между зданиями, если расстояние не превышает 300-550 м;

    в горизонтальных сегментах СКС и в системах FTTD (fiber - to - the - desk ), где пользователям устанавливаются рабочие станции с многомодовыми оптическими сетевыми картами;

    в центрах обработки данных в дополнение к одномодовому волокну;

    во всех случаях, где расстояние позволяет применять многомодовые кабели. Хотя сами кабели обходятся дороже, экономия на активном оборудовании покрывает эти затраты.

Можно ожидать, что в ближайшие годы волокно OS2 постепенно вытеснит OS1 (его снимают с производства), а в многомодовых системах исчезнут волокна 62.5/125 мкм, поскольку их полностью вытеснят световоды 50 мкм, вероятно, классов OM3-OM4.

Тестирование одномодовых и многомодовых оптических кабелей

После монтажа все установленные оптические сегменты подлежат тестированию. Только измерения, проведенные специальным оборудованием, позволяют гарантировать характеристики установленных линий и каналов. Для сертификации СКС применяются приборы с квалифицированными источниками излучения на одном конце линии и измерителями на другом. Такое оборудование производят компании Fluke Networks, JDSU, Psiber; все подобные устройства имеют предустановленные базы допустимых оптических потерь в соответствии с телекоммуникационными стандартами TIA/EIA, ISO/IEC и другими. Более протяженные оптические линии проверяют с помощью оптических рефлектометров , имеющих соответствующий динамический диапазон и разрешающую способность.

На этапе эксплуатации все установленные оптические сегменты требуют бережного обращения и регулярного использования специальных чистящих салфеток, палочек и других средств очистки .

Нередки случаи, когда проложенные кабели повреждают, например, при копке траншей или при выполнении ремонтных работ внутри зданий. В этом случае для поиска места сбоя необходим рефлектометр или другой диагностический прибор, основанный на принципах рефлектометрии и показывающий расстояние до точки сбоя (подобные модели есть у производителей Fluke Networks, EXFO, JDSU, NOYES (FOD), Greenlee Communication и других).

Встречающиеся на рынке бюджетные модели предназначены в основном для локализации повреждений (плохих сварок, обрывов, макроизгибов и т д). Зачастую они не в состоянии провести детальную диагностику оптической линии, выявить все её неоднородности и профессионально создать отчет. Кроме этого, они менее надежны и долговечны.

Качественное оборудование - напротив надежно, способно диагностировать ВОЛС в мельчайших деталях, составить корректную таблицу событий, сгенерировать редактируемый отчет. Последнее крайне важно для паспортизации оптических линий, потому как иногда встречаются сварные соединения с настолько низкими потерями, что рефлектометр не в состоянии определить такое соединение. Но сварка ведь всё равно есть, и ее необходимо отобразить в отчёте. В этом случае программное обеспечение позволяет принудительно установить на рефлектограмме событие и в ручном режиме измерить потери на нем.

Многие профессиональные приборы также имеют возможность расширения функциональных возможностей за счет добавления опций: видеомикроскопа для инспектирования торцов волокон, источника лазерного излучения и измерителя мощности, оптического телефона и др.

Волокна из кварцевого стекла, получившие наибольшее распространение в системах телекоммуникаций, разделяют на две основных категории - одномодовое (SM - single-mode) и многомодовое (MM - multimode). Оба типа имеют свои преимущества и недостатки, которые необходимо учитывать при проектировании линии связи. Многомодовому оптическому волокну посвящена . Базовые вопросы волоконно-оптической связи (понятие оптоволокна, его основные характеристики, понятие моды…) обсуждаются в статье « ».

Структура одномодового волокна и особенности передачи оптического излучения

Одномодовое волокно , как следует из названия, способно распространять на рабочей длине волны только одну основную (фундаментальную) моду оптического излучения. Одномодовый режим достигается за счет очень маленького диаметра сердцевины (обычно 7-10 мкм). Основная мода распространяется вблизи центральной оси волокна, при этом часть оптической мощности распространяется в оболочке, что повышает требования к оптическим свойствам оболочки. Чтобы учесть эту особенность, для описания одномодового оптического волокна помимо диаметра сердцевины используется еще и такой параметр, как диаметр модового пятна , который определяется как диаметр окружности, на которой мощность излучения уменьшается в е раз. Иными словами, в пределах этой окружности распространяется бо́льшая часть оптического излучения. (рис. 1). Очевидно, что диаметр модового пятна чуть больше диаметра сердцевины.

Рис. 1. Понятие модового пятна

Применительно к одномодовому оптическому волокну также вводится параметр длины волны отсечки . Если длина волны излучения меньше длины волны отсечки, в волокне начинают распространяться несколько мод, то есть оно становится многомодовым. Это важно учитывать при выборе рабочей длины волны. В стандартном одномодовом волокне длина волны отсечки имеет величину 1260 нм. Типичные рабочие длины волн для одномодового кварцевого волокна - 1310 и 1550 нм (второе и третье окна прозрачности, затухание меньше 0,4 дБ/км, см. рис. 2).

Рис. 2. Затухание в одномодовом кварцевом волокне

Набольшее распространение в телекоммуникациях получило кварцевое одномодовое волокно с соотношением диаметров сердцевины и оболочки 9/125 мкм. Как и в случае многомодового волокна, на одномодовое волокно наносится первичное защитное покрытие диаметром примерно 250 мкм (бывают другие размеры).

Отличия от многомодового волокна

В одномодовом волокне отсутствует межмодовая дисперсия, то есть уширение сигнала во времени из-за разницы в скорости распространения мод. Поэтому одномодовое волокно характеризуется очень большой величиной ширины полосы пропускания (десятки и даже сотни ТГц*км). Стандартное одномодовое волокно имеет ступенчатый профиль показателя преломления.

Величина затухания в одномодовом оптоволокне в несколько раз меньше, чем в многомодовом и примерно в 1000 раз меньше, чем затухание в кабеле на витой паре Cat6 (данные для частоты 500 МГц).

Таким образом, одномодовое волокно позволяет передавать информацию на очень большие расстояния (до 300 км) на высокой скорости без ретрансляции (восстановления) сигнала, причем характеристики передачи определяются главным образом свойствами активного оборудования.

С другой стороны, одномодовое волокно требует большой точности при вводе излучения и при стыковке оптических волокон друг с другом, что повышает стоимость используемых волоконно-оптических компонентов (активное оборудование, соединительные изделия) и усложняет процесс монтажа и обслуживания линий.

История и классификация

Первые одномодовые волокна появились в начале 1980-х годов и, благодаря своим отличным характеристикам передачи, стали активно использоваться в протяженных линиях связи. В то же время для передачи на короткие расстояния, например, в локальных сетях, продолжалось использование многомодового волокна. Со временем, в связи с уменьшением стоимости как самого волокна, так и компонентов для него, одномодовое волокно стало завоевывать все большую популярность и в непротяженных сетях. Таким образом, сегодня кварцевое одномодовое волокно является самым распространенным типом оптического волокна для передачи информации.

Для многомодовых волокон традиционным стало деление на 4 класса (OM1, OM2, OM3, OM4), в соответствии со стандартом ISO/IEC 11801. Для одномодового волокна существует похожее деление, однако оно далеко не так однозначно.

Международный стандарт ISO/IEC 11801 и европейский стандарт EN 50173, выпущенные в 1995 году, описывали только один тип одномодового волокна, получивший обозначение OS1 (Optical Single-Mode). Величина затухания, указанная для него, составляла 1 дБ/км на длинах волн 1310 и 1550 нм. По мере увеличения скорости и дальности передачи информации, стало ясно, что оптоволокно с таким затуханием уже не отвечает необходимым требованиям. Поэтому появилась новая категория одномодового волокна, названная OS2, в котором затухание было менее 0,4 дБ/км, причем это оптическое волокно имело низкий водный пик (увеличение затухания на длине волны 1383 нм, см. рис. 2). Параметры затухания указывались для волокна, заключенного в кабель. Традиционно считалось, что OS1 следует применять в кабелях с плотным буфером (tight buffer) для внутренней прокладки, а OS2 - в кабелях со свободным буфером (loose tube) для наружной прокладки.

В дальнейшем стандарты ISO/IEC и EN несколько раз переиздавались, и в них появлялись отличия в описании волокон OS1 и OS2. Это стало причиной путаницы в этих понятиях. Однако стоит отметить, что сегодня одномодовое волокно с затуханием 1 дБ/км практически не выпускается. Поэтому, в сущности, необходимость в такой классификации отпадает. Часто производители одномодовых волокон и кабелей обозначают свои изделия как OS2.

В дальнейшем появилось еще несколько разновидностей одномодовых кварцевых волокон, характеристики которых отличаются более существенно. Эти волокна были описаны в стандартах ITU-T G.652-657, IEC 60793-2-50, TIA-492CA/TIA-492EA. Отметим некоторые из этих разновидностей, которые представляют практический интерес в телекоммуникациях. Для определенности будем пользоваться рекомендациями ITU-T, которые чаще всего используются по отношению к одномодовому оптоволокну.

Типы одномодовых волокон

1. Одномодовое волокно с несмещенной дисперсией, G.652

Наиболее распространенный тип одномодового волокна с точкой нулевой хроматической дисперсии на длине волны 1300 нм. Стандарт выделяет четыре подкласса (A, B, C и D), отличающихся своими характеристиками. Особо стоит отметить волокна G.652.C и G.652.D - они имеют низкое затухание на длине волны 1383 нм, то есть в области «водного пика», а потому могут использоваться в системах CWDM. Такие волокна еще называют «всеволновыми».

2. Одномодовое волокно с нулевой смещенной дисперсией, G.653
(ZDSF - Zero Dispersion-Shifted Fiber)

Изменяя профиль показателя преломления, можно сдвинуть точку нулевой дисперсии в третье окно прозрачности (1550 нм), что позволяет увеличить дальность передачи сигнала при работе в этом диапазоне.

3. Одномодовое волокно со смещенной длиной волны отсечки, G.654

Этот тип волокна имеет точку нулевой дисперсии на 1300 нм. Однако благодаря чуть большему диаметру сердцевины длина волны отсечки и область минимального затухания смещены в область длин волн 1550 нм. Такое оптоволокно может использоваться для цифровой передачи на большие расстояния, например, в наземных системах дальней связи и магистральных подводных кабелях с оптическими усилителями.

4. Одномодовое волокно с ненулевой смещенной дисперсией, G.655
(NZDSF - Non-Zero Dispersion Shifted Fiber)

Предназначено для передачи на длинах волн вблизи 1550 нм и оптимизировано для систем DWDM. Абсолютное значение коэффициента хроматической дисперсии в этом волокне больше некоего ненулевого значения в диапазоне длин волн от 1530 нм до 1565 нм. Ненулевая дисперсия препятствует возникновению нелинейных эффектов, которые особенно вредны для DWDM систем.

5. Одномодовое волокно c ненулевой смещенной дисперсией для широкополосной передачи, G.656

Подобно волокну G.655, имеет ненулевое значение коэффициента хроматической дисперсии, но уже в диапазоне длин волн 1460-1625 нм, поэтому хорошо подходит как для систем DWDM, так и для CWDM.

6. Одномодовое волокно, не чувствительное к потерям на макроизгибе, G.657 (Bend-Insensitive)

Помимо оптических свойств, важную роль играют и механические характеристики оптоволокна, в частности, его чувствительность к изгибам. Особенно это важно при прокладке внутри помещения, где волокно часто нужно изгибать. Стандарт G.657 выделяет несколько подклассов одномодового волокна, отличающихся минимальным радиусом изгиба и соответствующей величиной потерь (на одном или нескольких витках).

Описанные стандарты оптических волокон не всегда взаимоисключают друг друга. К примеру, распространенное оптоволокно компании Corning марки SMF-28® Ultra соответствует стандартам G.652.D и G.657.A1. В то же время бывают случаи, когда оптические волокна разных типов не совместимы друг с другом.

Активные компоненты

Поскольку одномодовое волокно имеет маленький диаметр сердцевины, в качестве источников излучения для него используются узконаправленные полупроводниковые лазеры, работающие во втором и третьем окнах прозрачности кварцевого волокна. Как правило, используются следующие типы лазеров:

1) Лазер с резонатором Фабри-Перо (FP - Fabry-Perot) - простейший тип полупроводникового лазера, характеризующийся большой шириной спектра (2 нм). Широкий спектр приводит к увеличению влияния хроматической дисперсии, что ограничивает расстояние передачи сигнала.

2) Лазер с распределенной обратной связью (DFB - distributed feedback) имеет конструкцию, способствующую уменьшению ширины спектра излучения до 0,1 нм, что позволяет использовать такие лазеры в более высокоскоростных и протяженных системах.

3) Лазер с внешней модуляцией (EML - externally modulated laser). Предыдущие типы излучателей относятся к категории лазеров с внутренней (прямой) модуляцией, при которой мощность излучения модулируется непосредственно током питания лазера. В системах, где важную роль играет стабильность длины волны излучения (например, в высокоскоростных системах и в системах WDM) применяются DFB лазеры, излучение которых модулируется внешним устройством модулятором.

Применение одномодового волокна

Итак, использование одномодового кварцевого волокна позволяет осуществить передачу информационного сигнала на десятки и даже сотни километров на высокой скорости (десятки Гбит/с).

Кроме того, как уже было отмечено выше, некоторые виды одномодового волокна можно использовать в сетях со спектральным уплотнением каналов (CWDM, DWDM), когда по одному оптоволокну одновременно распространяется излучение на нескольких длинах волн, причем в обоих направлениях (рис. 3). Это позволяет увеличить скорость передачи и объем передаваемой информации еще в большей степени. Частным случаем применения спектрального уплотнения является пассивная оптическая сеть (PON), в которой информация передается на трех длинах волн (1310, 1490 и 1550 нм).

Рис. 3. Каналы CWDM и DWDM и спектр затухания одномодового волокна (сплошная линия - стандартное волокно с водным пиком на 1383 нм, пунктирная линия - волокно с низким водным пиком)

________________________________________________________________

Типы оптических волокон

Существует два типа оптических волокон: многомодовые (ММ ) и одномодовые (SM ), отличающиеся диаметрами световедущей сердцевины. Многомодовое волокно , в свою очередь, бывает двух типов: со ступенчатым и градиентным профилями показателя преломления по его сечению.

Многомодовое оптическое волокно со ступенчатым показателем преломления

В ступенчатом оптоволокне могут возбуждаться и распространяться до тысячи мод с различным распределением по сечению и длине оптоволокна. Моды имеют различные оптические пути и, следовательно, различные времена распространения по оптоволокну, что приводит к уширению импульса света по мере его прохождения по оптоволокну. Это явление называется межмодовой дисперсией и оно непосредственно влияет на скорость передачи информации по оптоволокну. Область применения ступенчатых оптоволокон короткие (до 1 км) линии связи со скоростями передачи информации до 100 Мбайт/с, рабочая длина волны излучения, как правило, 0,85 мкм.

Многомодовое оптическое волокно с градиентным показателем преломления

Отличается от ступенчатого тем, что показатель преломления изменяется в нём плавно от середины к краю. В результате моды идут плавно, межмодовая дисперсия меньше.

Градиентное оптоволокно в соответствии со стандартами имеет диаметр сердцевины 50 мкм и 62,5 мкм, диаметр оболочки 125 мкм. Оно применяется во внутриобъектовых линиях длиной до 5 км, со скоростями передачи до 100 Мбайт/c на длинах волн 0,85 мкм и 1,35 мкм.

Одномодовое оптическое волокно

Стандартное одномодовое оптическое волокно имеет диаметр сердцевины 9 мкм и диаметр оболочки 125 мкм

В этом оптоволокне существует и распространяется только одна мода (точнее две вырожденные моды с ортогональными поляризациями), поэтому в нем отсутствует межмодовая дисперсия, что позволяет передавать сигналы на расстояние до 50 км со скоростью до 2,5 Гбит/с и выше без регенерации. Рабочие длины волн λ1 = 1,31 мкм и λ2 = 1,55 мкм.

Окна прозрачности оптоволокна.

Говоря об окнах прозрачности оптического волокна, обычно рисуют такую картинку.

Окна прозрачности оптоволокна

В настоящее время оптоволокно с такой характеристикой уже считается устаревшим. Достаточно давно освоен выпуск оптоволокна типа AllWave ZWP (zero water peak, с нулевым пиком воды), в котором устранены гидроксильные ионы в составе кварцевого стекла. Такое стекло имеет уже не окно, а прямо таки проём в диапазоне от 1300 до 1600 нм.

Все окна прозрачности лежат в инфракрасном диапазоне, то есть свет, передающийся по ВОЛС, не виден глазу. Стоит заметить, что в стандартное оптоволокно можно ввести и видимое глазом излучение. Для этого применяют либо небольшие блоки, присутствующие в некоторых рефлектометрах, либо даже слегка переделанную китайскую лазерную указку. С помощью таких приспособлений можно находить переломы в шнурах. Там, где оптоволокно сломано, будет видно яркое свечение. Такой свет быстро затухает в волокне, так что использовать его можно только на коротких расстояниях (не более 1 км).

Гибкость оптического волокна

Фотография, надеюсь, успокоит тех, кто привык видеть стекло бьющимся и хрупким.

Оптоволокно. Гибкость оптоволокна

Здесь изображено стандартное одномодовое волокно. То самое, 125 мкм кварцевого стекла, использующееся повсеместно. Из-за лакового покрытия оптоволокно способно выдерживать изгибы радиусом в 5 мм (хорошо видно на рисунке). Свет, а значит и сигнал через такой изгиб, увы, уже не проходит.

Информация о расшифровке маркировки оптоволоконных кабелей размещавшееся в этом месте размещена на страницах:

Оптоволокно

← Вернуться

×
Вступай в сообщество «passport13.com»!
ВКонтакте:
Я уже подписан на сообщество «passport13.com»