Теория вероятностей в жизни. Вебинар «Где применяется теория вероятностей

Подписаться
Вступай в сообщество «passport13.com»!
ВКонтакте:

М ногие люди используют теорию вероятностей регулярно. Особенно часто её применяют в своём деле предприниматели. Но практически никто не связывает с ней личные расчёты и продуманные действия. Теория вероятностей в жизни помогает избегать многих неприятностей, в том числе - потерь. Большинство бизнесменов владеют ею на практическом уровне. С другой стороны, нередко те, кому теория вероятностей должна, казалось бы, очень хорошо понятна, на самом де ле в ней - полные невежды. К слову, израильский учёный, Нобелевский лауреат Даниэл Канеман и его друг Амос Тверски доказали экспериментально: специалисты, имеющие математическое образование, по-настоящему не разбираются в теории вероятностей. Они не берут её во внимание даже в тех случаях, когда можно было бы избежать потерь или получить выгоду. И действуют точно так, как и лица, которые совсем не знакомы с данной теорией.

Для своего дела (в смысле своего бизнеса) теория вероятностей необходима. Её понимание и постоянное применение - й из основ успеха и эффективности в работе.

Теория вероятностей проста, если её не усложнять

Рассмотрим теорию вероятностей на очень простых примерах. Если у нас в ящике лежит 10 пронумерованных шаров с цифрами от 1 до 10, то вероятность вытянуть шар с числом 10 равна 10 процентам. Но более вероятней, что мы вытянем любое другое число от 1 до 9, а не самое большое (не 10), поскольку такая вероятность составляет 90 процентов. Вытянуть шар с самым большим числом из 10000 пронумерованных шаров уже слишком маловероятно. Скорее всего, мы вытянем любое другое число (не 10000). При 10 миллионах шарах вытянуть самое большое число (10000000) практически невозможно. Закономерным результатом будет вытягивание любого другого числа, но не самого большого. Приведённые примеры с шарами подвели нас к закону больших чисел. Он гласит:

Явления, вероятные при их малом числе, при большом количестве становятся закономерными, при очень большом - неизбежными.

В наших примерах вытянуть десятку из 10 шаров возможно, однако более вероятно, что мы вытянем любое другое число. Но по мере увеличения количества шаров вероятность вытягивания не самого большого числа всё более увеличивается и превращается при достижении большого числа шаров в закономерность, а при их огромном количестве - в неизбежность.

Закон больших чисел включает в себя несколько положений (несколько теорем). К уже известной Вам формулировке следует добавить ещё одну:

С увеличением числа вероятных явлений их средние величины стремятся стать постоянными и при большом количестве таковыми практически становятся.

Рассмотрим данное положение на примере с монетой. При подбрасывании монеты 10 раз её падение орлом или решкой кверху вероятно в соотношении и 5 к 5, и 6 к 4, и 3 к 7... Но по мере увеличения количества бросков это соотношение неумолимо будет приближаться к равенству (к постоянным средним величинам), то есть к соотношению 50% на 50%. При миллионе бросков получить даже соотношение 60% на 40% практически невозможно - оно будет очень близко к соотношению 50% на 50%. Некоторые люди полагают, что вероятность выпадения одной стороной монеты 100 раз подряд равна 1 проценту. И очень заблуждаются, поскольку такое событие слишком маловероятно: как один шанс из нескольких миллиардов.

Думаю, Вы поняли, что теория вероятностей действительно проста. Её положения с момента публикации (несколько веков назад) проверялись почти во всех государствах огромное количество раз. Особенно преуспели в этом студенты. Как правило, для проверки использовались монеты. И все убеждались в полном совпадении теории с практикой.

Применение теории вероятностей в своём деле

При оценке ситуации на рынке (в своей нише), в работе со статистическими данными неизбежно приходиться использовать теорию вероятностей - как правило, на практическом уровне. Но лучше, если Вы будете применять данную теорию, понимая её теоретическую основу. Ведь она действительно простая. Важно лишь понимать теорию вероятностей и применять осознанно. А ситуации, в которых её использование необходимо, возникают постоянно, особенно в бизнесе. Поэтому запомните две приведённые формулировки теории вероятностей. Они выделены выше красным цветом. Постарайтесь осознать их смысл! Это действительно для Вас очень важно!

X республиканская научно-практическая конференция

«Рождественские чтения»

Секция: математика

Исследовательская работа

Случайность или закономерность?

Теория вероятности в жизни

Гатауллина Лилия,

школа№66, 8 Б класс

Московский район, город Казань

Научный руководитель: учитель математики 1кв. кат Магсумова Э.Н

Казань 2011

Введение…………………………………………………………………………………………………3

Глава 1.Теория вероятности – что это?……………………………………………….5

Глава 2. Эксперименты…………………………………………………………7

Глава 3. Можно ли выиграть в лотерею или рулетку? ………………………..9

Заключение ……………………………………………………………………………………………11

Список литературы…………………………………………………………………………………12

Приложение

Введение

Людей всегда интересовало будущее. Человечество во все врем ена искало способ его предугадать, или спланировать. В разное время разными способами. В современном мире есть теория, которую наука признает и пользуется для планирования и прогнозирования будущего. Речь о теории вероятностей.

В жизни мы часто сталкиваемся со случайными явлениями. Чем обусловлена их случайность – нашим незнанием истинных причин происходящего или случайность лежит в основе многих явлений? Споры на эту тему не утихают в самых разных областях науки. Случайным ли образом возникают мутации, насколько зависит историческое развитие от отдельной личности, можно ли считать Вселенную случайным отклонением от законов сохранения? Пуанкаре, призывая разграничить случайность, связанную с неустойчивостью, от случайности, связанной с нашим незнанием, приводил следующий вопрос: «Почему люди находят совершенно естественным молиться о дожде, в то время как они сочли бы смешным просить в молитве о затмении?»

У каждого ‘случайного’ события есть четкая вероятность его наступления. Например, посмотрите официальную статистику пожаров в России. (см. приложение №1) Вас ничего не удивляет? Данные из года в год стабильные. За 7 лет разброс от 14 до 19 тысяч погибших.Задумайтесь, пожар - событие случайное. Но можно с большой точностью предсказать сколько погибнет людей в пожаре в следующем году (~ 14-19 тысяч).

В стабильной системе вероятность наступления событий сохраняется из год в год. То есть, с точки зрения человека с ним произошло случайное событие. А с точки зрения системы, оно было предопределенно.

Разумный человек должен стремиться мыслить, исходя из законов вероятностей (статистики). Но в жизни о вероятности мало кто думает. Решения принимаются эмоционально.

Люди боятся летать самолетами. А между тем, самое опасное в полете на самолете - это дорога в аэропорт на автомобиле. Но попробуй кому-то объяснить, что машина опасней самолета. Вероятность того, что пассажир, севший в самолет погибнет в авиакатастрофе составляет примерно

1/8 000 000. Если пассажир будет садиться каждый день на случайный рейс, ему понадобится 21 000 лет чтобы погибнуть.(см.приложение №2)

По исследованиям: в США в первые 3 месяца после терактов 11 сентября 2001 года погибло еще одна тысяч людей… косвенно. Они в страхе перестали летать самолетами и начали передвигаться по стране на автомобилях. А так как это опасней, то количество смертей возросло.

По телевидению пугают: птичьим и свиными гриппами, терроризмом…, но вероятность этих событий ничтожна по сравнению с настоящими угрозами. Опасней переходить дорогу по зебре, чем лететь на самолете. От падения кокосов погибает ~ 150 человек в год. Это в десятки раз больше, чем от укуса акул. Но фильма “Кокос-убийца” пока не снято. Подсчитано, что шанс человека быть подвергнутым нападению акулы составляет 1 к 11,5 млн, а шанс погибнуть от такого нападения 1 к 264,1 млн. Среднегодовое количество утонувших в США составляет 3306 человек, а погибших от акул 1. Миром правит вероятность и нужно помнить об этом. Они помогут вам взглянуть на мир с точки зрения случая. (см. приложение №3)

В своей исследовательской работе я попробую проверить, действительно ли теория вероятности действует и как её можно применить в жизни.

Вероятность события в жизни не так уж часто считается по формулам, скорее интуитивно. Но проверить совпадает ли «эмпирический анализ» с математическим, иногда очень полезно.

Гл ава 1 . Теория вероятности – что это?

Теория вероятностей или теория вероятности – это один из разделов Высшей Математики. Это самый интересный раздел Науки Высшая Математика Теория вероятности, которая являясь сложной дисциплиной, имеет применение в реальной жизни. Теория вероятностей представляет несомненную ценность для общего образования. Эта наука позволяет не только получать знания, которые помогают понимать закономерности окружающего мира, но и находить практическое применение теории вероятности в повседневной жизни. Так, каждому из нас каждый день приходиться принимать множество решений в условиях неопределенности. Однако эту неопределенность можно «превратить» в некоторую определенность. И тогда это знание может оказать существенную помощь при принятии решения. Изучение теории вероятностей требует больших усилий и терпения.

Теперь же давайте перейдем к самой теории и истории ее возникновения. Главным понятием теории вероятностей является вероятность. Это слово «вероятность», синонимом которого является, например, слово «шанс» достаточно часто применяется в повседневной жизни. Думаю, каждому знакомы фразы: «Завтра, вероятно, выпадет снег», или «вероятнее всего в выходные я поеду на природу», или «это просто невероятно», или «есть шанс получить зачет автоматом». Такого рода фразы на интуитивном уровне оценивают вероятность того, что произойдет некоторое случайное событие. В свою очередь математическая вероятность дает некоторую числовую оценки вероятности того, что произойдет некоторое случайное событие.

Теория вероятностей оформилась в самостоятельную науку относительно не давно, хотя история теории вероятностей началась еще в античности. Так, Лукреций, Демокрит, Кар и еще некоторые ученые древней Греции в своих рассуждениях говорили о равновероятностных исходах такого события, как возможность того, что вся материя состоит из молекул. Таким образом, понятие вероятности использовалось на интуитивном уровне, но оно не было выделено в новую категорию. Тем не менее, античные ученые заложили прекрасный фундамент для возникновения этого научного понятия. В средние века, можно сказать, и зародилась теория вероятности, когда были приняты первые попытки математического анализа, таких азартных игр как кости, орлянка, рулетка.

Первые научные работы по теории вероятностей появились в 17 веке. Когда такие ученые как Блез Паскаль и Пьер Ферма открыли некоторые закономерности, которые возникают при бросании костей. В ту же пору к данному вопросу проявлял интерес еще один ученый Христиан Гюйгенс. Он в 1657 в своей работе ввел следующие понятия теории вероятностей: понятие вероятности как величины шанса или возможности; математическое ожидание для дискретных случаев, в виде цены шанса, а также теоремы сложения и умножения вероятностей, которые правда не были сформулированы в явном виде. Тогда же теория вероятностей стала находить сферы своего применения – демографию, страховое дело, оценку ошибок наблюдений.

Дальнейшее развитие теории вероятностей привело к необходимости аксиоматизации теории вероятностей и главного понятия – вероятности. Так становление аксиоматики теории вероятностей произошло в 30 гг 20 века. Самый существенный вклад в заложение основ теории внес Космогоров А.Н.

На сегодняшний день теории вероятностей это самостоятельная наука, имеющая огромную сферу применения. В данном разделе сайта Вы найдете шпаргалки по теории вероятности, лекции и задачи по теории вероятностей, литературу, а также много интересных статей о применении теории вероятностей в жизни.

Глава 2 . Эксперимент ы

Я решила проверить классическое определение вероятности.

Определение: Пусть множество исходов опыта состоит из n равновероятных исходов. Если m из них благоприятствуют событию A, то вероятностью события A называется число Р(А) = m/n.

Возьмем, к примеру, игру в монету. При бросании может быть два равновероятных исхода: монета может упасть кверху гербом или решкой. Бросая монету один раз нельзя предугадать, какая сторона окажется сверху. Однако, бросив монету 100 раз, можно сделать выводы. Можно заранее сказать, что герб выпадет не 1 и не 2 раза, а больше, но и не 99 и не 98 раз, а меньше. Число выпадений герба будет близко к 50. На самом деле, и на опыте можно в этом убедиться, что это число будет заключено между 40 и 60. Кто и когда впервые проделал опыт с монетой, неизвестно.

Французский естествоиспытатель Бюффон (1707-1788) в восемнадцатом столетии 4040 раз подбрасывал монету-герб выпал 2048 раз. Математик К.Пирсон в начале в начале нынешнего столетия подбрасывал ее 24 000 раз-герб выпал 12012 раз. Лет 20 назад американские экспериментаторы повторили опыт. При 10 000 подбрасываний герб выпал 4979 раз. Значит, результаты бросаний монеты, хотя каждое из них и является случайным событием, при неоднократном повторении подвластны объективному закону.

Проведём опыт. Для начала, возьмем в руки монетку, будем ее бросать и записывать результат последовательно в виде строки: О, Р, Р, О, О, Р. Здесь буквами О и Р обозначено выпадение орла или решки. В нашем случае бросание монетки – это испытание, а выпадение орла или решки – событие, то есть возможный исход нашего испытания. Результаты эксперимента представлен в приложении № 4. Проведя 100 испытаний орел выпал – 55, решка – 45.Вероятность выпадения орла в данном случае-0,55; решки – 0,45. Таким образом, я показала, что теория вероятности в данном случае имеет место быть.

Рассмотрим задачу с тремя дверьми и призами за ней: «Автомобиль или козлы»? или «парадокс Монти Холла». Условия задачи таковы:

Вы участвуете в игре. Ведущий предлагает выбрать одну из трех дверей и рассказывает о том, что за одной из дверей находится выигрыш – автомобиль, за двумя другими дверями спрятаны козы. После того, как Вы остановили свой выбор на одной из дверей, ведущий, который знает что находится за каждой дверью, открывает одну из оставшихся двух дверей и демонстрирует, что за ней находится козел (коза, пол животного в этом случае на так уж важен) А потом ведущий хитро так спрашивает: «Желаете ли Вы изменить свой выбор двери?» Увеличит ли изменение выбора шансы на выигрыш?

Если подумать: вот две закрытые двери, одну Вы уже выбрали и вероятность что за выбранной дверью автомобиль/коза 50% как и с подбрасыванием монетки. Но это совсем не так. Если поменять свое решение и выбрать другую дверь, то шансы выигрыша увеличатся в 2 раза! Опыт подтвердил данное утверждение (см. приложение №5). Т.е. оставив свой выбор, игрок получит автомобиль в одном из трех случаев, а поменяв двух из трех. Статистика телепередачи подтверждает, что те, кто менял свой выбор, выигрывали в два раза чаще.

Это все теория вероятности и она верна на «множестве вариантов». Надеюсь, что этот пример заставит вас задуматься, как быстро взять в руки книгу о теории вероятностей, а также начать ее применять в своей работе. Поверьте, это интересно и увлекательно, да и практический толк есть.

Глава 3 . Можно ли выиграть в лотерею или рулетку?

Каждый из нас хоть раз в жизни покупал лотерею или играл в азартные игры, но далеко не все использовали заранее спланированную стратегию. Умные игроки давно перестали надеяться на удачу и включили рациональное мышление. Дело в том, что каждое событие имеет определенное математическое ожидание, как гласит высшая математика и теория вероятности, и, если правильно оценивать ситуацию, то можно обойти неудовлетворительный исход события.

К примеру, в любой игре, такой, как рулетка, есть возможность играть с вероятностью на выигрыш 50%, ставя на выпадение четного числа, или красной ячейки. Вот как раз эту игру мы и рассмотрим.

Для обеспечения прибыли, составим несложную стратегию игры. К примеру, мы имеем возможность посчитать, с какой вероятностью выпадет четное число 10 раз подряд – 0,5*0,5 и так 10 раз. Умножаем на 100% и получаем всего 0,097%, или же, примерно, 1 шанс из 1 000. Столько игр, пожалуй, сыграть вам не удастся и за всю свою жизнь, значит, вероятность выпадения 10 четных чисел подряд практически равна «0». Воспользуемся этой тактикой игры на практике. Но это еще не все, даже 1 раз из 1 000 – это для нас много, так что сократим это число до 1 из 10 000. Вы спросите, каким образом это можно сделать, не увеличивая заранее предполагаемое количество выпадения четных чисел подряд? Ответ прост – время.

Подходим к рулетке и ждем пока выпадет 2 раза подряд четное число. Это будет каждый раз из четырех расчетных случаев. Теперь ставим минимальную ставку на четное число, к примеру 5р, и выигрываем по 5р за каждое выпадение четного числа, вероятность которого 50%. Если же выпало нечетное, то увеличиваем следующую ставку в 2 раза, то есть ставим уже 10р. В этом случае вероятность проиграть будет равна 6%. Но не паникуйте, если даже в этот раз вы проиграете! Делайте повышение каждый раз в два раза больше. С каждым разом математическое ожидание на выигрыш увеличивается, и Вы в любом случае останетесь в прибыли.

Важно учесть тот факт, что эта стратегия подходит только для малых ставок, так как, изначально поставив большие деньги – Вы рискуете проиграть все из-за ограничений ставок в будущем. Если у Вас возникли сомнения по данной тактике, сыграйте с другом в угадывание стороны монеты на вымышленные деньги, ставя при проигрыше ставку в два раза больше. Через время Вы убедитесь, что эта методика проста на практике и очень эффективна! Можно сделать вывод, что играя по данной стратегии, Вы не заработаете миллионы, а лишь выиграете себе на мелкие расходы.

Заключение

Изучая тему «теории вероятности в жизни», я поняла, что это огромный раздел науки математики. И изучить его в один заход невозможно.

Перебрав множество фактов из жизни, и проведя эксперименты в домашних условиях, я поняла, что действительно теория вероятности в жизни имеет место быть. Вероятность события в жизни не так уж часто считается по формулам, скорее интуитивно. Но проверить совпадает ли «эмпирический анализ» с математическим, иногда очень полезно.

Можем ли мы предугадать с помощью этой теории, что случится с нами через день, два, тысячу? Конечно нет. Событий связанных с нами в каждый момент времени очень много. Только на одну лишь типизацию этих событий не хватит и жизни. А уж их совмещение - и вовсе гиблое дело. С помощью этой теории предугадывать можно лишь однотипные события. Например, такое как бросание монеты - это событие из 2 вероятностных результатов. В общем, прикладное применение теории вероятностей связанно с немалым количеством условий и ограничений. Для сложных процессов сопряжено с вычислениями, которые под силу лишь компьютеру.

Но следует помнить, что в жизни есть ещё такое понятие как удача, везение. Это то, что мы говорим – повезло, когда например какой-нибудь человек не учился никогда, никуда не стремился, лежал на диване, играл в компьютер, а через 5 лет мы видим как у него берут интервью на MTV. У него была вероятность 0.001 стать музыкантом, она выпала, ему повезло, такое схождение обстоятельств. То, что мы называем – оказался в нужном месте и в нужное время, когда срабатывают те самые 0.001.

Таким образом, работаем над собой, принимаем решения, которые могут повысить вероятность выполнения наших желаний и стремлений, каждый случай может добавить те заветные 0.00001, которые сыграют решающую роль в итоге.

Список литературы

  • 2.1. Относительная частота. Устойчивость относительной частоты
  • 2.2. Ограниченность классического определения вероятности. Статистическая вероятность
  • 2.3. Геометрические вероятности
  • 2.4. Теорема сложения вероятностей
  • 2.5. Полная группа событий
  • 2.6. Противоположные события
  • 2.7. Принцип практической невозможности маловероятных событий
  • 2.8. Произведение событий. Условная вероятность
  • 2.9. Теорема умножения вероятностей
  • 2.10. Независимые события. Теорема умножения для независимых событий
  • 2.10. Вероятность появления хотя бы одного события
  • Лекция №3 следствия теорем сложения и умножения
  • 3.1. Теорема сложения вероятностей совместных событий
  • 3.2. Формула полной вероятности
  • 3.3. Вероятность гипотез. Формулы Бейеса
  • 4. Повторение испытаний
  • 4.1. Формула Бернулли
  • 4.2. Предельные теоремы в схеме Бернулли
  • 4.3. Локальная и интегральная теоремы Муавра-Лапласа
  • 4.3. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях
  • 5. Случайные величины
  • 5.1. Понятие случайной величины. Закон распределения случайной величины
  • 5.2. Закон распределения дискретной случайной величины. Многоугольник распределения
  • 5.3. Биномиальное распределение
  • 5.4. Распределение Пуассона
  • 5.5. Геометрическое распределение
  • 5.6. Гипергеометрическое распределение
  • 6. Математическое ожидание дискретной случайной величины
  • 6.1. Числовые характеристики дискретных случайных величин
  • 6.2. Математическое ожидание дискретной случайной величины
  • 6.3. Вероятностный смысл математического ожидания
  • 6.4. Свойства математического ожидания
  • 6.5. Математическое ожидание числа появлений события в независимых испытаниях
  • 7. Дисперсия дискретной случайной величины
  • 7.1. Целесообразность введения числовой характеристики рассеяния случайной величины
  • 7.2. Отклонение случайной величины от ее математического ожидания
  • 7.3. Дисперсия дискретной случайной величины
  • 7.4. Формула для вычисления дисперсии
  • 7.5. Свойства дисперсии
  • 7.6. Дисперсия числа появлений события в независимых испытаниях
  • 7.7. Среднее квадратическое отклонение
  • 7.8. Среднее квадратическое отклонение суммы взаимно независимых случайных величин
  • 7.9. Одинаково распределенные взаимно независимые случайные величины
  • 7.10. Начальные и центральные теоретические моменты
  • 8. Закон больших чисел
  • 8.1. Предварительные замечания
  • 8.2. Неравенство Чебышева
  • 8.3. Теорема Чебышева
  • 8.4. Сущность теоремы Чебышева
  • 8.5. Значение теоремы Чебышева для практики
  • 8.6. Теорема Бернулли
  • Функция распределения вероятностей случайной величины
  • 9.1. Определение функции распределения
  • 9.2. Свойства функции распределения
  • 9.3. График функции распределения
  • 10. Плотность распределения вероятностей непрерывной случайной величины
  • 10.1. Определение плотности распределения
  • 10.2. Вероятность попадания непрерывной случайной величины в заданный интервал
  • 10.3. Закон равномерного распределения вероятностей
  • 11. Нормальное распределение
  • 11.1. Числовые характеристики непрерывных случайных величин
  • 11.2. Нормальное распределение
  • 11.3. Нормальная кривая
  • 11.4. Влияние параметров нормального распределения на форму нормальной кривой
  • 11.5. Вероятность попадания в заданный интервал нормальной случайной величины
  • 11.6. Вычисление вероятности заданного отклонения
  • 11.7. Правило трех сигм
  • 11.8. Понятие о теореме Ляпунова. Формулировка центральной предельной теоремы
  • 11.9. Оценка отклонения теоретического распределения от нормального. Асимметрия и эксцесс
  • 11.10. Функция одного случайного аргумента и ее распределение
  • 11.11. Математическое ожидание функции одного случайного аргумента
  • 11.12. Функция двух случайных аргументов. Распределение суммы независимых слагаемых. Устойчивость нормального распределения
  • 11.13. Распределение «хи квадрат»
  • 11.14. Распределение Стьюдента
  • 11.15. Распределение f Фишера – Снедекора
  • 12. Показательное распределение
  • 12.1. Определение показательного распределения
  • 12.2. Вероятность попадания в заданный интервал показательно распределенной случайной величины
  • § 3. Числовые характеристики показательного распределения
  • 12.4. Функция надежности
  • 12.5. Показательный закон надежности
  • 12.6. Характеристическое свойство показательного закона надежности
  • 1.2. Области применения теории вероятностей

    Методы теории вероятностей широко применяются в различных отраслях естествознания и техники:

     в теории надежности,

     теории массового обслуживания,

     теоретической физике,

     геодезии,

     астрономии,

     теории стрельбы,

     теории ошибок наблюдений,

     теории автоматического управления,

     общей теории связи и во многих других теоретических и прикладных науках.

    Теория вероятностей служит также для обоснования математической и прикладной статистики, которая в свою очередь используется при планировании и организации производства, при анализе технологических процессов, предупредительном и приемочном контроле качества продукции и для многих других целей.

    В последние годы методы теории вероятностей все шире и шире проникают в различные области науки и техники, способствуя их прогрессу.

    1.3. Краткая историческая справка

    Первые работы, в которых зарождались основные понятия теории вероятностей, представляли собой попытки создания теории азартных игр (Кардано, Гюйгенс, Паскаль, Ферма и другие в XVI-XVII вв.).

    Следующий этап развития теории вероятностей связан с именем Якоба Бернулли (1654 – 1705). Доказанная им теорема, получившая впоследствии название «Закона больших чисел», была первым теоретическим обоснованием накопленных ранее фактов.

    Дальнейшими успехами теория вероятностей обязана Муавру, Лапласу, Гауссу, Пуассону и др. Новый, наиболее плодотворный период связан с именами П. Л. Чебышева (1821 – 1894) и его учеников А.А.Маркова (1856 – 1922) и А.М. Ляпунова (1857 – 1918). В этот период теория вероятностей становится стройной математической наукой. Ее последующее развитие обязано в первую очередь русским и советским математикам (С.Н. Бернштейн, В.И. Романовский, А.Н. Колмогоров, А.Я. Хинчин, Б.В. Гнеденко, Н. В. Смирнов и др.).

    1.4. Испытания и события. Виды событий

    Основными понятиями теории вероятностей являются понятие элементарного события и понятие пространства элементарных событий. Выше событие названо случайным, если при осуществлении определенной совокупности условий S оно может либо произойти, либо не произойти. В дальнейшем, вместо того чтобы говорить «совокупность условий S осуществлена», будем говорить кратко: «произведено испытание». Таким образом, событие будет рассматриваться как результат испытания.

    Определение. Случайным событием называется всякий факт, который может произойти или не произойти в результате опыта.

    При этом тот или иной результат опыта может быть получен с различной степенью возможности. То есть в некоторых случаях можно сказать, что одно событие произойдет практически наверняка, другое практически никогда.

    Определение. Пространством элементарных исходов Ω называется множество, содержащее все возможные результаты данного случайного эксперимента, из которых в эксперименте происходит ровно один. Элементы этого множества называют элементарными исходами и обозначают буквой ω («омега»).

    Тогда событиями называют подмножества множества Ω. Говорят, что в результате эксперимента произошло событие A Ω, если в эксперименте произошел один из элементарных исходов, входящих в множество A.

    Будем для простоты считать, что число элементарных событий конечно. Подмножество пространства элементарных событий называют случайным событием. Это событие в результате испытания может произойти или не произойти (выпадение трех очков при бросании игральной кости, звонок в данную минуту по телефону и т. д.).

    Пример 1. Стрелок стреляет по мишени, разделенной на четыре области. Выстрел – это испытание. Попадание в определенную область мишени – событие.

    Пример 2. В урне имеются цветные шары. Из урны наудачу берут один шар. Извлечение шара из урны есть испытание. Появление шара определенного цвета – событие.

    В математической модели можно принять понятие события как первоначальное, которому не дается определения и которое характеризуется лишь своими свойствами. Исходя из реального смысла понятия события, можно определить различные виды событий.

    Определение. Случайное событие называют достоверным , если оно заведомо произойдет (выпадение от одного до шести очков при бросании кости), и невозможным , если оно заведомо не может произойти в результате опыта (выпадение семи очков при бросании кости). При этом достоверное событие содержит все точки пространства элементарных событий, а невозможное событие не содержит ни одной точки этого пространства.

    Определение. Два случайных события называют несовместными , если они не могут произойти одновременно при одном и том же исходе испытания. И вообще любое количество событий называются несовместными , если появление одного из них исключает появление других.

    Классическим примером несовместных событий является результат подбрасывания монеты – выпадение лицевой стороны монеты исключает выпадение обратной стороны (в одном и том же опыте).

    Другой пример – из ящика с деталями наудачу извлечена деталь. Появление стандартной детали исключает появление нестандартной детали. События «появилась стандартная деталь» и «появилась нестандартная деталь» – несовместные.

    Определение. Несколько событий образуют полную группу , если в результате испытания появится хотя бы одно из них.

    Другими словами, появление хотя бы одного из событий полной группы есть достоверное событие. В частности, если события, образующие полную группу, попарно несовместны, то в результате испытания появится одно и только одно из этих событий. Этот частный случай представляет наибольший интерес, поскольку используется далее.

    Пример. Приобретены два билета денежно-вещевой лотереи. Обязательно произойдет одно и только одно из следующих событий: «выигрыш выпал на первый билет и не выпал на второй», «выигрыш не выпал на первый билет и выпал на второй», «выигрыш выпал на оба билета», «на оба билета выигрыш не выпал». Эти события образуют полную группу попарно несовместных событий.

    Пример. Стрелок произвел выстрел по цели. Обязательно произойдет одно из следующих двух событий: попадание, промах. Эти два несовместных события образуют полную группу.

    Пример. Если из коробки, содержащей только красные и зеленые шары, наугад вынимают один шар, то появление среди вынутых шаров белого – невозможное событие. Появление красного и появление зеленого шаров образуют полную группу событий.

    Определение. События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.

    Пример. Появление «герба» и появление надписи при бросании монеты – равновозможные события. Действительно, предполагается, что монета изготовлена из однородного материала, имеет правильную цилиндрическую форму и наличие чеканки не оказывает влияния на выпадение той или иной стороны монеты.

    Пример. Появление того или иного числа очков на брошенной игральной кости – равновозможные события. Действительно, предполагается, что игральная кость изготовлена из однородного материала, имеет форму правильного многогранника и наличие очков не оказывает влияния на выпадение любой грани.

    В приведенном выше примере с шарами появление красного и зеленого шаров – равновозможные события, если в коробке находится одинаковое количество красных и зеленых шаров. Если же в коробке красных шаров больше, чем зеленых, то появление зеленого шара – событие менее вероятное, чем появление красного.

    Многие спрашивают, что такое теория вероятности, познания и всего , на что она влияет и какие ее функции. Как известно теорий много и мало из них работают на практике. Конечно теория вероятности, познания и всего давно доказана учеными, поэтому мы рассмотрим ее в данной статье, чтобы использовать ее в свою пользу.

    В статье вы узнаете, что такое теория вероятности, познания и всего, какие ее функции, как она проявляется и как ее использовать в свою пользу. Ведь вероятность и познанное очень важно в нашей жизни и поэтому нужно использовать то, что уже проверено учеными и доказано наукой.

    Конечно теория вероятности – это математическая и физическая наука, которая изучает то или иное явление и какова вероятность того, что все произойдет именно так, как вы хотите. Например, насколько вероятно, что конец света случиться именно через 27 лет и так далее.

    Также теория вероятности применима и в нашей жизни, когда мы стремимся к своим целям и не знаем, как рассчитать вероятность того, добьемся мы своей цели или нет. Конечно, в основу этого ляжет ваше трудолюбие, четкий план и реальные действия, что можно рассчитать на долгие годы.

    Теория познания

    Также в жизни важна теория познания, так как она определяет наше подсознание и сознание. Так как мы познаем этот мир, и каждый день развиваемся. Познавать что-то новое лучше всего, читая интересные книги, написанные успешными авторами, достигшие чего-то в жизни. Также познание позволяет нам ощущать Бога внутри себя и творить себе реальность такой, какой мы хотим или же довериться Богу и стать марионеткой в его руках.


    Теория всего

    Но вот теория всего говорит нам, что мир возник именно благодаря большому взрыву, что разъединило энергию на несколько клеток за считанные секунды и как мы видим большое население, это на самом деле разделение энергии. Когда людей станет меньше, тога это будет означать, что Мир снова возвращается в свою первоначальную точку и когда мир восстановиться, велика вероятность очередного взрыва.

    Начать по праву следует со статистической физики. Современное естествознание исходит из представления, согласно которому все явления природы носят статистический характер и законы могут получить точную формулировку только в терминах теории вероятностей. Статистическая физика стала основой всей современной физики, а теория вероятностей - ее математическим аппаратом. В статистической физике рассматриваются задачи, которые описывают явления, определяющиеся поведение большого числа частиц. Статистическая физика весьма успешно применяется в самых разных разделах физики. В молекулярной физике с ее помощью объясняют тепловые явления, в электромагнетизме - диэлектрические, проводящие и магнитные свойства тел, в оптике она позволила создать теорию теплового излучения, молекулярного рассеивания света. В последние годы круг приложений статистической физики продолжает расширяться.

    Статистические представления позволили быстро оформить математическое изучение явлений ядерной физики. Появление радиофизики и изучение вопросов передачи радио сигналов не только усилили значение статистических концепций, но и привели к прогрессу самой математической науки - появлению теории информации.

    Понимание природы химических реакций, динамического равновесия также невозможно без статистических представлений. Вся физическая химия, ее математический аппарат и предлагаемые ею модели являются статистическими.

    Обработка результатов наблюдений, которые всегда сопровождаются и случайными ошибками наблюдений, и случайными для наблюдателя изменениями в условиях проведения эксперимента, еще в XIX столетии привела исследователей к созданию теории ошибок наблюдений, и эта теория полностью опирается на статистические представления.

    Астрономия в ряде своих разделов использует статистический аппарат. Звездная астрономия, исследование распределения материи в пространстве, изучение потоков космических частиц, распределение на поверхности солнца солнечных пятен (центров солнечной активности) и многое другое нуждается в использовании статистических представлений.

    Биологи заметили, что разброс размеров органов живых существ одного и того же вида прекрасно укладывается в общие теоретико-вероятностные законы. Знаменитые законы Менделя, положившие начало современной генетике, требуют вероятностно-статистических рассуждений. Изучение таких значительных проблем биологии, как передача возбуждения, устройство памяти, передача наследственных свойств, вопросы расселения животных на территории, взаимоотношения хищника и жертвы требует хорошего знания теории вероятностей и математической статистики.

    Гуманитарные науки объединяют очень разнообразные по характеру дисциплины - от языкознания и литературы до психологии и экономики. Статистические методы все в более значительной мере начинают привлекаться к историческим исследованиям, особенно в археологии. Статистический подход используется для расшифровки надписей на языке древних народов. Идеи, руководившие Ж. Шампольоном при расшифровке древнего иероглифического письма, являются в основе своей статистическими. Искусство шифрования и дешифровки основано на использовании статистических закономерностей языка. Другие направления связаны с изучением повторяемости слов и букв, распределения ударений в словах, вычислением информативности языка конкретных писателей и поэтом. Статистические методы используются для установления авторства и изобличения литературных подделок. Например, авторство М.А. Шолохова по роману "Тихий Дон" было установлено с привлечением вероятностно-статистических методов. Выявление частоты появления звуков языка в устной и письменной речи позволяет ставить вопрос об оптимальном кодировании букв данного языка для передачи информации. Частота использования букв определяет соотношение количества знаков в наборной типографской кассе. Расположение букв на каретке пишущей машины и на клавиатуре компьютера, определяется статистическим изучением частоты сочетаний букв в данном языке.

    Многие проблемы педагогики и психологии также требуют привлечения вероятностно-статистического аппарата. Вопросы экономики не могут не интересовать общество, поскольку с ней связаны все аспекты ее развития. Без статистического анализа невозможно предвидеть изменение количества населения, его потребностей, характера занятости, изменения массового спроса, а без этого невозможно планировать хозяйственную деятельность.

    Непосредственно связаны с вероятностно-статистическими методами вопросы проверки качества изделий. Зачастую изготовление изделия занимает несравненно меньше времени, чем проверка его качества. По этой причине нет возможности проверить качество каждого изделия. Поэтому приходится судить о качестве партии по сравнительно небольшой части выборки. Статистические методы используются и тогда, когда испытание качества изделий приводит к их порче или гибели.

    Вопросы, связанные с сельским хозяйством, уже давно решаются с широким использованием статистических методов. Выведение новых пород животных, новых сортов растений, сравнение урожайности - вот далеко не полный список задач, решаемых статистическими методами.

    Можно без преувеличения сказать, что статистическими методами сегодня пронизана вся наша жизнь. В известном сочинении поэта-материалиста Лукреция Кара "О природе вещей" имеется яркое и поэтическое описание явления броуновского движения пылинок:

    "Вот посмотри: всякий раз, когда солнечный свет проникает В наши жилища и мрак прорезает своими лучами, Множества маленьких тел в пустоте, ты увидишь, мелькая, Мечутся взад и вперед в лучистом сиянии света; Будто бы в вечной борьбе они бьются в сраженьях и битвах. В схватки бросаются вдруг по отрядам, не зная покоя. Или сходясь, или врозь беспрерывно опять разлетаясь. Можешь из этого ты уяснить себе, как неустанно Первоначала вещей в пустоте необъятной мятутся. Так о великих вещах помогают составить понятье Малые вещи, пути намечая для из достиженья, Кроме того, потому обратить тебе надо вниманье На суматоху в телах, мелькающих в солнечном свете, Что из нее познаешь ты материи также движенье"

    Первая возможность экспериментального исследования соотношений между беспорядочным движением отдельных частиц и закономерным движением их больших совокупностей появилась, когда в 1827 году ботаник Р. Броун открыл явление, которое по его имени названо "броуновским движением". Броун наблюдал под микроскопом взвешенную в воде цветочную пыльцу. К своему удивлению он обнаружил, что взвешенные в воде частицы находятся в непрерывном беспорядочном движении, которое не удается прекратить при самом тщательном старании устранить какие либо внешние воздействия. Вскоре было обнаружено, что это общее свойство любых достаточно мелких частиц, взвешенных в жидкости. Броуновское движение - классический пример случайного процесса.

    ← Вернуться

    ×
    Вступай в сообщество «passport13.com»!
    ВКонтакте:
    Я уже подписан на сообщество «passport13.com»