Алгоритм решения дробных неравенств методом интервалов. Метод интервалов: решение простейших строгих неравенств

Подписаться
Вступай в сообщество «passport13.com»!
ВКонтакте:

Метод интервалов принято считать универсальным для решения неравенств. Иногда этот метод также называют методом промежутков. Применим он как для решения рациональных неравенств с одной переменной, так и для неравенств других видов. В нашем материале мы постарались уделить внимание всем аспектам вопроса.

Что ждет вас в данном разделе? Мы разберем метод промежутков и рассмотрим алгоритмы решения неравенств с его помощью. Затронем теоретические аспекты, на которых основано применение метода.

Особое внимание мы уделяем нюансам темы, которые обычно не затрагиваются в рамках школьной программы. Например, рассмотрим правила расстановки знаков на интервалах и сам метод интервалов в общем виде без его привязки к рациональным неравенствам.

Yandex.RTB R-A-339285-1

Алгоритм

Кто помнит, как происходит знакомство с методом промежутков в школьном курсе алгебры? Обычно все начинается с решения неравенств вида f (x) < 0 (знак неравенства может быть использован любой другой, например, ≤ , > или ≥). Здесь f (x) может быть многочленом или отношением многочленов. Многочлен, в свою очередь, может быть представлен как:

  • произведение линейных двучленов с коэффициентом 1 при переменной х;
  • произведение квадратных трехчленов со старшим коэффициентом 1 и с отрицательным дискриминантом их корней.

Приведем несколько примеров таких неравенств:

(x + 3) · (x 2 − x + 1) · (x + 2) 3 ≥ 0 ,

(x - 2) · (x + 5) x + 3 > 0 ,

(x − 5) · (x + 5) ≤ 0 ,

(x 2 + 2 · x + 7) · (x - 1) 2 (x 2 - 7) 5 · (x - 1) · (x - 3) 7 ≤ 0 .

Запишем алгоритм решения неравенств такого вида, как мы привели в примерах, методом промежутков:

  • находим нули числителя и знаменателя, для этого числитель и знаменатель выражения в левой части неравенства приравниваем к нулю и решаем полученные уравнения;
  • определяем точки, которые соответствуют найденным нулям и отмечаем их черточками на оси координат;
  • определяем знаки выражения f (x) из левой части решаемого неравенства на каждом промежутке и проставляем их на графике;
  • наносим штриховку над нужными участками графика, руководствуясь следующим правилом: в случае, если неравенство имеет знаки < или ≤ изображается, штрихуются «минусовые» промежутки, если же мы работаем с неравенством, имеющим знаки > или ≥ , то выделяем штриховкой участки, отмеченные знаком « + ».

Четреж, с которым мы будем работать, может иметь схематический вид. Излишние подробности могут перегружать рисунок и затруднять решение. Нас будет мало интересовать маштаб. Достаточно будет придерживаться правильного расположения точек по мере роста значений их координат.

При работе со строгими неравенствами мы будем использовать обозначение точки в виде круга с незакрашенным (пустым) центром. В случае нестрогих неравенств точки, которые соответствуют нулям знаменателя, мы будем изображать пустыми, а все остальные обычными черными.

Отмеченные точки разбивают координатную прямую на несколько числовых промежутков. Это позволяет нам получить геометрическое представление числового множества, которое фактически является решением данного неравенства.

Научные основы метода промежутков

Основан подход, положенный в основу метода промежутков, основан на следующем свойстве непрерывной функции: функция сохраняет постоянный знак на интервале (a , b) , на котором эта функция непрерывна и не обращается в нуль. Это же свойство характерно для числовых лучей (− ∞ , a) и (a , + ∞) .

Приведенное свойство функции подтверждается теоремой Больцано-Коши, которая приведена во многих пособиях для подготовки к вступительным испытаниям.

Обосновать постоянство знака на промежутках также можно на основе свойств числовых неравенств. Например, возьмем неравенство x - 5 x + 1 > 0 . Если мы найдем нули числителя и знаменателя и нанесем их на числовую прямую, то получим ряд промежутков: (− ∞ , − 1) , (− 1 , 5) и (5 , + ∞) .

Возьмем любой из промежутков и покажем на нем, что на всем промежутке выражение из левой части неравенства будет иметь постоянный знак. Пусть это будет промежуток (− ∞ , − 1) . Возьмем любое число t из этого промежутка. Оно будет удовлетворять условиям t < − 1 , и так как − 1 < 5 , то по свойству транзитивности, оно же будет удовлетворять и неравенству t < 5 .

Используя оба полученных неравенства и свойство числовых неравенств, мы можем предположить, что t + 1 < 0 и t − 5 < 0 . Это значит, что t + 1 и t − 5 – это отрицательные числа независимо от значения t на промежутке (− ∞ , − 1) .

Используя правило деления отрицательных чисел, мы можем утверждать, что значение выражения t - 5 t + 1 будет положительным. Это значит, что значение выражения x - 5 x + 1 будет положительным при любом значении x из промежутка (− ∞ , − 1) . Все это позволяет нам утверждать, что на промежутке, взятом для примера, выражение имеет постоянный знак. В нашем случае это знак « + ».

Нахождение нулей числителя и знаменателя

Алгоритм нахождения нулей прост: приравниваем выражения из числителя и знаменателя к нулю и решаем полученные уравнения. При возникновении затруднений можно обратиться к теме «Решение уравнений методом разложения на множители». В этом разделе мы ограничимся лишь рассмотрением примера.

Рассмотрим дробь x · (x - 0 , 6) x 7 · (x 2 + 2 · x + 7) 2 · (x + 5) 3 . Для того, чтобы найти нули числителя и знаменателя, приравняем их к нулю для того, чтобы получить и решить уравнения: x · (x − 0 , 6) = 0 и x 7 · (x 2 + 2 · x + 7) 2 · (x + 5) 3 = 0 .

В первом случае мы можем перейти к совокупности двух уравнений x = 0 и x − 0 , 6 = 0 , что дает нам два корня 0 и 0 , 6 . Это нули числителя.

Второе уравнение равносильно совокупности трех уравнений x 7 = 0 , (x 2 + 2 · x + 7) 2 = 0 , (x + 5) 3 = 0 . Проводим ряд преобразований и получаем x = 0 , x 2 + 2 · x + 7 = 0 , x + 5 = 0 . Корень первого уравнения 0 , у второго уравнения корней нет, так как оно имеет отрицательный дискриминант, корень третьего уравнения - 5 . Это нули знаменателя.

0 в данном случае является одновременно и нулем числителя, и нулем знаменателя.

В общем случае, когда в левой части неравенства дробь, которая не обязательно является рациональной, числитель и знаменатель точно также приравниваются к нулю для получения уравнений. Решение уравнений позволяет найти нули числителя и знаменателя.

Определить знак интервала просто. Для этого можно найти значение выражения из левой части неравенства для любой произвольно выбранной точки из данного интервала. Полученный знак значения выражения в произвольно выбранной точке промежутка будет совпадать со знаком всего промежутка.

Рассмотрим это утверждение на примере.

Возьмем неравенство x 2 - x + 4 x + 3 ≥ 0 . Нулей числителя выражение, расположенное в левой части неравенства, нулей не имеет. Нулем знаменателя будет число - 3 . Получаем два промежутка на числовой прямой (− ∞ , − 3) и (− 3 , + ∞) .

Для того, чтобы определить знаки промежутков, вычислим значение выражения x 2 - x + 4 x + 3 для точек, взятых произвольно на каждом из промежутков.

Из первого промежутка (− ∞ , − 3) возьмем − 4 . При x = − 4 имеем (- 4) 2 - (- 4) + 4 (- 4) + 3 = - 24 . Мы получили отрицательное значение, значит весь интервал будет со знаком « - ».

Для промежутка (− 3 , + ∞) проведем вычисления с точкой, имеющей нулевую координату. При x = 0 имеем 0 2 - 0 + 4 0 + 3 = 4 3 . Получили положительное значение, что значит, что весь промежуток будет иметь знак « + ».

Можно использовать еще один способ определения знаков. Для этого мы можем найти знак на одном из интервалов и сохранить его или изменить при переходе через нуль. Для того, чтобы все сделать правильно, необходимо следовать правилу: при переходе через нуль знаменателя, но не числителя, или числителя, но не знаменателя мы можем поменять знак на противоположный, если степень выражения, дающего этот нуль, нечетная, и не можем поменять знак, если степень четная. Если мы получили точку, которая является одновременно нулем числителя и знаменателя, то поменять знак на противоположный можно только в том случае, если сумма степеней выражений, дающих этот нуль, нечетная.

Если вспомнить неравенство, которое мы рассмотрели в начале первого пункта этого материала, то на крайнем правом промежутке мы можем поставить знак « + ».

Теперь обратимся к примерам.

Возьмем неравенство (x - 2) · (x - 3) 3 · (x - 4) 2 (x - 1) 4 · (x - 3) 5 · (x - 4) ≥ 0 и решим его методом интервалов. Для этого нам необходимо найти нули числителя и знаменателя и отметить их на координатной прямой. Нулями числителя будут точки 2 , 3 , 4 , знаменателя точки 1 , 3 , 4 . Отметим их на оси координат черточками.

Нули знаменателя отметим пустыми точками.

Так как мы имеем дело с нестрогим неравенством, то оставшиеся черточки заменяем обычными точками.

Теперь расставим точки на промежутках. Крайний правый промежуток (4 , + ∞) будет знак + .

Продвигаясь справа налево будем проставлять знаки остальных промежутков. Переходим через точку с координатой 4 . Это одновременно нуль числителя и знаменателя. В сумме, эти нули дают выражения (x − 4) 2 и x − 4 . Сложим их степени 2 + 1 = 3 и получим нечетное число. Это значит, что знак при переходе в данном случае меняется на противоположный. На интервале (3 , 4) будет знак минус.

Переходим к интервалу (2 , 3) через точку с координатой 3 . Это тоже нуль и числителя, и знаменателя. Мы его получили благодаря двум выражениям (x − 3) 3 и (x − 3) 5 , сумма степеней которых равна 3 + 5 = 8 . Получение четного числа позволяет нам оставить знак интервала неизменным.

Точка с координатой 2 – это нуль числителя. Степень выражения х - 2 равна 1 (нечетная). Это значит, что при переходе через эту точку знак необходимо изменить на противоположный.

У нас остался последний интервал (− ∞ , 1) . Точка с координатой 1 – это нуль знаменателя. Он был получен из выражения (x − 1) 4 , с четной степенью 4 . Следовательно, знак остается прежним. Итоговый рисунок будет иметь вот такой вид:

Применение метода интервалов особенно эффективно в случаях, когда вычисление значения выражения связано с большим объемом работы. Примером может стать необходимость вычисления значения выражения

x + 3 - 3 4 3 · x 2 + 6 · x + 11 2 · x + 2 - 3 4 (x - 1) 2 · x - 2 3 5 · (x - 12)

в любой точке интервала 3 - 3 4 , 3 - 2 4 .

Теперь займемся применением полученных знаний и навыков на практике.

Пример 1

Решите неравенство (x - 1) · (x + 5) 2 (x - 7) · (x - 1) 3 ≤ 0 .

Решение

Целесообразно применить для решения неравенства метод интервалов. Находим нули числителя и знаменателя. Нули числителя 1 и - 5 , нули знаменателя 7 и 1 . Отметим их на числовой прямой. Мы имеем дело с нестрогим неравенством, поэтому нули знаменателя отметим пустыми точками, нуль числителя - 5 отметим обычной закрашенной точкой.

Проставим знаки промежутков, используя правила изменения знака при переходе через нуль. Начнем с крайнего правого промежутка, для которого вычислим значение выражения из левой части неравенства в точке, произвольно взятой из промежутка. Получим знак « + ». Перейдем последовательно через все точки на координатной прямой, расставляя знаки, и получим:

Мы работаем с нестрогим неравенством, имеющим знак ≤ . Это значит, что нам необходимо отметить штриховкой промежутки, отмеченные знаком « - ».

Ответ: (- ∞ , 1) ∪ (1 , 7) .

Решение рациональных неравенств в большинстве случаев требует их предварительного преобразования к нужному виду. Только после этого появляется возможность использовать метод интервалов. Алгоритмы проведения таких преобразований рассмотрены в материале «Решение рациональных неравенств».

Рассмотрим пример преобразования квадратных трехчленов в записи неравенств.

Пример 2

Найдите решение неравенства (x 2 + 3 x + 3) (x + 3) x 2 + 2 · x - 8 > 0 .

Решение

Давайте посмотрим, действительно ли дискриминанты квадратных трехчленов в записи неравенства отрицательны. Это позволит нам определить, позволяет ли вид данного неравенства применить для решения метод интервалов.

Вычислим дискриминант для трехчлена x 2 + 3 · x + 3: D = 3 2 − 4 · 1 · 3 = − 3 < 0 . Теперь вычислим дискриминант для трехчлена x 2 + 2 · x − 8: D ’ = 1 2 − 1 · (− 8) = 9 > 0 . Как видите, неравенство требует предварительного преобразования. Для этого представим трехчлен x 2 + 2 · x − 8 как (x + 4) · (x − 2) , а потом применим метод интервалов для решения неравенства (x 2 + 3 · x + 3) · (x + 3) (x + 4) · (x - 2) > 0 .

Ответ: (- 4 , - 3) ∪ (2 , + ∞) .

Обобщенный метод промежутков применяется для решения неравенств вида f (x) < 0 (≤ , > , ≥) , где f (x) – произвольное выражение с одной переменной x .

Все действия проводятся по определенному алгоритму. При этом алгоритм решения неравенств обобщенным методом интервалов будет несколько отличаться от того, что мы разобрали ранее:

  • находим область определения функции f и нули этой функции;
  • отмечаем на координатной оси граничные точки;
  • наносим на числовую прямую нули функции;
  • определяем знаки промежутков;
  • наносим штриховку;
  • записываем ответ.

На числовой прямой необходимо отмечать в том числе и отдельные точки области определения. К примеру, областью определения функции служит множество (− 5 , 1 ] ∪ { 3 } ∪ [ 4 , 7) ∪ { 10 } . Это значит, что нам необходимо отметить точки с координатами − 5 , 1 , 3 , 4 , 7 и 10 . Точки − 5 и 7 изобразим пустыми, остальные можно выделить цветным карандашом для того, чтобы отличать их затем от нулей функции.

Нули функции в случае нестрогих неравенств наносятся обычными (закрашенными) точками, строгих – пустыми точками. Если нули совпадают с граничными точками или отдельными точками области определения, то их можно перекрасить в черный цвет, сделав пустыми или закрашенными в зависимости от вида неравенства.

Запись ответа представляет собой числовое множество, которое включает в себя:

  • промежутки со штриховкой;
  • отдельные точки области определения со знаком плюс, если мы имеем дело с неравенством, знак которого > или ≥ или со знаком минус, если в неравенстве есть знаки < или ≤ .

Теперь стало понятно, что тот алгоритм, который мы привели в самом начале темы, является частным случаем алгоритма применения обобщенного метода интервалов.

Рассмотрим пример применения обобщенного метода интервалов.

Пример 3

Решите неравенство x 2 + 2 · x - 24 - 3 4 · x - 3 x - 7 < 0 .

Решение

Вводим функцию f такую, что f (x) = x 2 + 2 · x - 24 - 3 4 · x - 3 x - 7 . Найдем область определения функции f :

x 2 + 2 · x - 24 ≥ 0 x ≠ 7 D (f) = (- ∞ , - 6 ] ∪ [ 4 , 7) ∪ (7 , + ∞) .

Теперь найдем нули функции. Для этого проведем решение иррационального уравнения:

x 2 + 2 · x - 24 - 3 4 · x - 3 = 0

Получаем корень x = 12 .

Для обозначения граничных точек на оси координат используем оранжевый цвет. Точки - 6 , 4 у нас будут закрашенными, а 7 оставляем пустой. Получаем:

Отметим ноль функции пустой точкой черного цвета, так как мы работаем со строгим неравенством.

Определяем знаки на отдельных промежутках. Для этого возьмем по одной точке из каждого промежутка, например, 16 , 8 , 6 и − 8 , и вычислим в них значение функции f :

f (16) = 16 2 + 2 · 16 - 24 - 3 4 · 16 - 3 16 - 7 = 264 - 15 9 > 0 f (8) = 8 2 + 2 · 8 - 24 - 3 4 · 8 - 3 8 - 7 = 56 - 9 < 0 f (6) = 6 2 + 2 · 6 - 24 - 3 4 · 6 - 3 6 - 7 = 24 - 15 2 - 1 = = 15 - 2 · 24 2 = 225 - 96 2 > 0 f (- 8) = - 8 2 + 2 · (- 8) - 24 - 3 4 · (- 8) - 3 - 8 - 7 = 24 + 3 - 15 < 0

Расставляем только что определенные знаки, и наносим штриховку над промежутками со знаком минус:

Ответом будет являться объединение двух промежутков со знаком « - »: (− ∞ , − 6 ] ∪ (7 , 12) .

В ответ мы включили точку с координатой - 6 . Это не нуль функции, который мы бы не включили в ответ при решении строгого неравенства, а граничная точка области определения, которая входит в область определения. Значение функции в этой точке отрицательное, это значит, что она удовлетворяет неравенству.

Точку 4 мы в ответ не включили, точно также, как не включили весь промежуток [ 4 , 7) . В этой точке, точно также, как и на всем указанном промежутке значение функции положительно, что не удовлетворяет решаемому неравенству.

Запишем это еще раз для более четкого понимания: цветные точки необходимо включать в ответ в следующих случаях:

  • эти точки являются частью промежутка со штриховкой,
  • эти точки являются отдельными точками области определения функции, значения функции в которых удовлетворяют решаемому неравенству.

Ответ: (− ∞ , − 6 ] ∪ (7 , 12) .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

На этом уроке мы продолжим решение рациональных неравенств методом интервалов для более сложных неравенств. Рассмотрим решение дробно-линейных и дробно-квадратичных неравенств и сопутствующие задачи.

Теперь возвращаемся к неравенству

Рассмотрим некоторые сопутствующие задачи.

Найти наименьшее решение неравенства.

Найти число натуральных решений неравенства

Найти длину интервалов, составляющих множество решений неравенства.

2. Портал Естественных Наук ().

3. Электронный учебно-методический комплекс для подготовки 10-11 классов к вступительным экзаменам по информатике, математике, русскому языку ().

5. Центр образования «Технология обучения» ().

6. Раздел College.ru по математике ().

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. №№ 28(б,в); 29(б,в); 35(а,б); 37(б,в); 38(а).

Начальный уровень

Метод интервалов. Исчерпывающее руководство (2019)

Этот метод тебе просто необходимо понять и знать его как свои пять пальцев! Хотя бы потому, что он применяется для решения рациональных неравенств и потому, что, зная этот метод как следует, решать эти неравенства на удивление просто. Чуть позже раскрою тебе пару секретов, как сэкономить время на решении этих неравенств. Ну что, заинтриговал? Тогда поехали!

Суть метода в разложении неравенства на множители (повтори тему ) и определении ОДЗ и знака сомножителей, сейчас все поясню. Возьмем самый простенький пример: .

Области допустимых значений () здесь писать не надо, поскольку деления на переменную нет, и радикалов (корней) здесь не наблюдается. На множители здесь все и так разложено за нас. Но не расслабляйся, это все, чтоб напомнить азы и понять суть!

Допустим, ты не знаешь метода интервалов, как бы ты стал решать это неравенство? Подойди логически и опирайся на то, что уже знаешь. Во-первых, левая часть будет больше нуля если оба выражения в скобках либо больше нуля, либо меньше нуля, т.к. «плюс» на «плюс» дает «плюс» и «минус» на «минус» дает «плюс», так? А если знаки у выражений в скобках разные, то в итоге левая часть будет меньше нуля. А что же нам нужно, чтоб узнать те значения, при которых выражения в скобках будут отрицательными или положительными?

Нам нужно решить уравнение, оно точно такое же как неравенство, только вместо знака будет знак, корни этого уравнения и позволят определить те пограничные значения, при отступлении от которых множители и будут больше или меньше нуля.

А теперь сами интервалы. Что такое интервал? Это некий промежуток числовой прямой, то есть все возможные числа, заключенные между двумя какими-то числами - концами интервала. Эти промежуткив голове представить не так просто, поэтому интервалы принято рисовать, сейчас научу.

Рисуем ось, на ней располагается весь числовой ряд от и до. На ось наносятся точки, те самые так называемые нули функции, значения, при которых выражение равняется нулю. Эти точки «выкалываются» что означает, что они не относятся к числу тех значений, при которых неравенство верно. В данном случае, они выкалываются т.к. знак в неравенстве а не, то есть строго больше а не больше или равно.

Хочу сказать, что ноль отмечать не обязательно, он без кружочков тут, а так, для понимания и ориентации по оси. Ладно, ось нарисовали, точки (точнее кружочки) поставили, дальше что, как мне это поможет в решении? - спросишь ты. Теперь просто возьми значение для икса из интервалов по порядку и подставь их в свое неравенство и смотри, какой знак будет в результате умножения.

Короче, просто берем например, подставляем его сюда, получится, а, значит на всем промежутке (на всем интервале) от до, из которого мы брали, неравенство будет справедливо. Иными словами если икс от до, то неравенство верно.

То же самое делаем и с интервалом от до, берем или, например, подставляем в, определяем знак, знак будет «минус». И так же делаем с последим, третьим интервалом от до, где знак получится «плюс». Такая куча текста вышла, а наглядности мало, правда?

Взгляни еще раз на неравенство.

Теперь все на ту же ось наносим еще и знаки, которые получатся в результате. Ломаной линией, в моем примере,обозначаем положительные и отрицательные участки оси.

Смотри на неравенство - на рисунок, опять на неравенство - и снова на рисунок , что-нибудь понятно? Постарайся теперь сказать на каких промежутках икса, неравенство будет верно. Правильно, от до неравенство будет справедливо и от до, а на промежутке от до неравенство нуля и нас этот промежуток мало интересует, ведь у нас в неравенстве знак стоит.

Ну, раз ты с этим разобрался, то дело за малым - записать ответ! В ответ пишем те промежутки, при которых левая часть больше нуля, что читается, как икс принадлежит промежутку от минус бесконечности до минус одного и от двух до плюс бесконечности. Стоит пояснить, что круглые скобки означают, что значения, которыми ограничен интервал не являются решениями неравенства, то есть они не включены в ответ, а лишь говорят о том, что до, например, но не есть решение.

Теперь пример, в котором тебе придется не только интервал рисовать:

Как думаешь, что надо сделать, прежде, чем точки на ось наносить? Ага, на множители разложить:

Рисуем интервалы и расставляем знаки, заметь точки у нас выколотые, потому, что знак строго меньше нуля:

Пришло время раскрыть тебе один секрет, который я обещал еще в начале этой темы! А что если я скажу тебе, что можно не подставлять значения из каждого интервала для определения знака, а можно определить знак в одном из интервалов, а в остальных просто чередовать знаки!

Таким образом, мы сэкономили немного времени на проставлении знаков - думаю, это выигранное время на ЕГЭ не помешает!

Пишем ответ:

Теперь рассмотрим пример дробно-рационального неравенства - неравенство, обе части которого являются рациональными выражениями (см. ).

Что можешь сказать про это неравенство? А ты взгляни на него как на дробно-рациональное уравнение, что делаем в первую очередь? Сразу видим, что корней нет, значит точно рациональное, но тут же дробь, да еще и с неизвестным в знаменателе!

Верно, ОДЗ надо!

Так, дальше поехали, здесь все множители кроме одного имеют переменную первой степени, но есть множитель, где икс имеет вторую степень. Обычно знак у нас менялся после перехода через одну из точек, в которой левая часть неравенства принимает нулевое значение, для чего мы определяли чему должен быть равен икс в каждом множителе. А тут, так оно же всегда положительно, т.к. любое число в квадрате > нуля и положительное слагаемое.

Как думаешь, повлияет на значение неравенства? Правильно - не повлияет! Смело можем поделить на обе части неравенства и тем самым убрать этот множитель, чтоб глаза не мозолил.

пришло время интервалы рисовать, для этого нужно определить те пограничные значения, при отступлении от которых множители и будут больше и меньше нуля. Но обрати внимание, что здесь знак, значит точку, в которой левая часть неравенства принимает нулевое значение, выкалывать не будем, она ведь входит в число решений, такая точка у нас одна, это точка, где икс равен одному. А точку где знаменатель отрицателен закрасим? - Конечно, нет!

Знаменатель не должен быть равен нулю, поэтому интервал будет выглядеть так:

По этой схеме ты уже без труда сможешь написать ответ, скажу только, что теперь у тебя в распоряжении есть новый тип скобки - квадратный! Вот такая скобка [ говорит, что значение входит в интервал решений, т.е. является частью ответа, эта скобка соответствует закрашенной (не выколотой) точке на оси.

Вот, - у тебя такой же ответ получился?

Раскладываем на множители и переносим все в одну сторону, нам ведь справа только ноль надо оставить, чтоб с ним сравнивать:

Обращаю твое внимание, что в последнем преобразовании, дабы получить в числителе как и в знаменателе, умножаю обе части неравенства на. Помни, что при умножении обеих частей неравенства на, знак неравенства меняется на противоположный!!!

Пишем ОДЗ:

Иначе знаменатель обратится в ноль, а на ноль, как ты помнишь, делить нельзя!

Согласись, в получившемся неравенства так и подмывает сократить в числителе и знаменателе! Этого делать нельзя, можно потерять часть решений или ОДЗ!

Теперь попробуй сам нанести точки на ось. Замечу лишь, что при нанесении точек надо обратить внимание на то, что точка со значением, которая исходя из знака, казалось бы, должна быть нанесена на ось как закрашенная, закрашенной не будет, она будет выколота! Почему спросишь ты? А ты ОДЗ вспомни, не собираешься же ты на ноль делить так?

Запомни, ОДЗ превыше всего! Если все неравенство и знаки равенства говорят одно, а ОДЗ - другое, доверяй ОДЗ, великой и могучей! Ну что, ты построил интервалы, я уверен, что ты воспользовался моей подсказкой по поводу чередования и у тебя получилось вот так (см. рисунок ниже) А теперь зачеркни, и не повторяй эту ошибку больше! Какую ошибку? - спросишь ты.

Дело в том, что в данном неравенстве множитель повторялся дважды (помнишь, как ты его еще сократить порывался?). Так вот, если какой-то множитель повторяется в неравенстве четное количество раз, то при переходе через точку на оси, которая обращает этот множитель в ноль (в данном случае точка), знак меняться не будет, если нечетное, то знак меняется!

Верным будет следующая ось с интервалами и знаками:

И, обрати внимание, что знак нас интересует не тот, который был в начале (когда мы только увидели неравенство, знак был), после преобразований, знак сменился на, значит, нас интересуют промежутки со знаком.

Ответ:

Скажу так же, что бывают ситуации, когда есть корни неравенства, которые не входят в какой-либо промежуток, в ответ они записываются в фигурных скобках, вот так, например: . Подробнее о таких ситуациях можешь прочитать в статье средний уровень.

Давай подведем итоги того, как решать неравенства методом интервала:

  1. Переносим все в левую часть, справа оставляем только ноль;
  2. Находим ОДЗ;
  3. Наносим на ось все корни неравенства;
  4. Берем произвольный из одного из промежутков и определяем знак в интервале к которому относится корень, чередуем знаки, обращая внимание на корни, повторяющиеся в неравенстве несколько раз, от четности или нечетности количества раз их повторения зависит, меняется знак при прохождении через них или нет;
  5. В ответ пишем интервалы, соблюдая выколотые и не выколотые точки (смотри ОДЗ), ставя необходимые виды скобок между ними.

Ну и наконец, наша любимая рубрика, «сделай сам»!

Примеры:

Ответы:

МЕТОД ИНТЕРВАЛОВ. СРЕДНИЙ УРОВЕНЬ

Линейная функция

Линейной называется функция вида. Рассмотрим для примера функцию. Она положительна при и отрицательна при. Точка - нуль функции (). Покажем знаки этой функции на числовой оси:

Говорим, что «функция меняет знак при переходе через точку ».

Видно, что знаки функции соответствуют положению графика функции: если график выше оси, знак « », если ниже - « ».

Если обобщить полученное правило на произвольную линейную функцию, получим такой алгоритм:

  • Находим нуль функции;
  • Отмечаем его на числовой оси;
  • Определяем знак функции по разные стороны от нуля.

Квадратичная функция

Надеюсь, ты помнишь, как решаются квадратные неравенства? Если нет, прочти тему . Напомню общий вид квадратичной функции: .

Теперь вспомним, какие знаки принимает квадратичная функция. Ее график - парабола, и функция принимает знак « » при таких, при которых парабола выше оси, и « » - если парабола ниже оси:

Если у функции есть нули (значения, при которых), парабола пересекает ось в двух точках - корнях соответствующего квадратного уравнения. Таким образом ось разбивается на три интервала, а знаки функции попеременно меняются при переходе через каждый корень.

А можно ли как-нибудь определить знаки, не рисуя каждый раз параболу?

Вспомним, что квадратный трехчлен можно разложить на множители:

Например: .

Отметим корни на оси:

Мы помним, что знак функции может меняться только при переходе через корень. Используем этот факт: для каждого из трех интервалов, на которые ось разбивается корнями, достаточно определить знак функции только в одной произвольно выбранной точке: в остальных точках интервала знак будет таким же.

В нашем примере: при оба выражения в скобках положительны (подставим, например:). Ставим на оси знак « »:

Ну и, при (подставь, например,) обе скобки отрицательны, значит, произведение положительно:

Это и есть метод интервалов : зная знаки сомножителей на каждом интервале, определяем знак всего произведения.

Рассмотрим также случаи, когда нулей у функции нет, или он всего один.

Если их нет, то и корней нет. А значит, не будет и «перехода через корень». А значит, функция на всей числовой оси принимает только один знак. Его легко определить, подставив в функцию.

Если корень только один, парабола касается оси, поэтому знак функции не меняется при переходе через корень. Какое правило придумаем для таких ситуаций?

Если разложить такую функцию на множители, получатся два одинаковых множителя:

А любое выражение в квадрате неотрицательно! Поэтому знак функции и не меняется. В таких случаях будем выделять корень, при переходе через который знак не меняется, обведя его квадратиком:

Такой корень будем называть кратным .

Метод интервалов в неравенствах

Теперь любое квадратное неравенство можно решать без рисования параболы. Достаточно только расставить на оси знаки квадратичной функции, и выбрать интервалы в зависимости от знака неравенства. Например:

Отмерим корни на оси и расставим знаки:

Нам нужна часть оси со знаком « »; так как неравенство нестрогое, сами корни тоже включаются в решение:

Теперь рассмотрим рациональное неравенство - неравенство, обе части которого являются рациональными выражениями (см. ).

Пример:

Все множители кроме одного - - здесь «линейные», то есть, содержат переменную только в первой степени. Такие линейные множители нам и нужны для применения метода интервалов - знак при переходе через их корни меняется. А вот множитель вообще не имеет корней. Это значит, что он всегда положительный (проверь это сам), и поэтому не влияет на знак всего неравенства. Значит, на него можно поделить левую и правую часть неравенства, и таким образом избавиться от него:

Теперь все так же, как было с квадратными неравенствами: определяем, в каких точках каждый из множителей обращается в нуль, отмечаем эти точки на оси и расставляем знаки. Обращаю внимание очень важный факт:


Ответ: . Пример: .

Для применения метода интервалов нужно, чтобы в одной из частей неравенства был. Поэтому перенесем правую часть налево:

В числителе и знаменателе одинаковый множитель, но не торопимся его сокращать! Ведь тогда мы можем забыть выколоть эту точку. Лучше отметить этот корень как кратный, то есть при переходе через него знак не поменяется:

Ответ: .

И еще один очень показательный пример:

Опять же, мы не сокращаем одинаковые множители числителя и знаменателя, так как если сократим, нам придется специально запоминать, что нужно выколоть точку.

  • : повторяется раза;
  • : раза;
  • : раза (в числителе и один в знаменателе).

В случае четного количества поступаем так же, как и раньше: обводим точку квадратиком и не меняем знак при переходе через корень. А вот в случае нечетного количества это правило не выполняется: знак все-равно поменяется при переходе через корень. Поэтому с таким корнем ничего дополнительно не делаем, как будто он у нас не кратный. Вышеописанные правила относятся ко всем четным и нечетным степеням.

Что запишем в ответе?

При нарушении чередования знаков нужно быть очень внимательным, ведь при нестрогом неравенстве в ответ должны войти все закрашенные точки . Но некоторые из нах часто стоят особняком, то есть не входят в закрашенную область. В этом случае мы добавляем их к ответу как изолированные точки (в фигурных скобках):

Примеры (реши сам):

Ответы:

  1. Если среди множителей просто - это корень, ведь его можно представить как.
    .

МЕТОД ИНТЕРВАЛОВ. КОРОТКО О ГЛАВНОМ

Метод интервалов применяется для решения рациональных неравенств. Он заключается в определении знака произведения по знакам сомножителей на различных промежутках.

Алгоритм решения рациональных неравенств методом интервалов.

  • Переносим все в левую часть, справа оставляем только ноль;
  • Находим ОДЗ;
  • Наносим на ось все корни неравенства;
  • Берем произвольный из одного из промежутков и определяем знак в интервале к которому относится корень, чередуем знаки, обращая внимание на корни, повторяющиеся в неравенстве несколько раз, от четности или нечетности количества раз их повторения зависит, меняется знак при прохождении через них или нет;
  • В ответ пишем интервалы, соблюдая выколотые и не выколотые точки (смотри ОДЗ), ставя необходимые виды скобок между ними.

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье - 299 руб.
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - 999 руб.

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Во втором случае мы подарим тебе тренажер “6000 задач с решениями и ответами, по каждой теме, по всем уровням сложности”. Его точно хватит, чтобы набить руку на решении задач по любой теме.

На самом деле это намного больше, чем просто тренажер - целая программа подготовки. Если понадобится, ты сможешь ею так же воспользоваться БЕСПЛАТНО.

Доступ ко всем текстам и программам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Как решать неравенства методом интервалов (алгоритм с примерами)

Пример . (задание из ОГЭ) Решите неравенство методом интервалов \((x-7)^2< \sqrt{11}(x-7)\)
Решение:

Ответ : \((7;7+\sqrt{11})\)

Пример . Решите неравенство методом интервалов \(≥0\)
Решение:

\(\frac{(4-x)^3 (x+6)(6-x)^4}{(x+7,5)}\) \(≥0\)

Здесь на первый взгляд все кажется нормальным, а неравенство изначально приведенным к нужному виду. Но это не так – ведь в первой и третьей скобке числителя икс стоит со знаком минус.

Преобразовываем скобки, с учетом того, что четвертая степень - четная (т.е. уберет знак минус), а третья – нечетная (т.е. не уберет).
\((4-x)^3=(-x+4)^3=(-(x-4))^3=-(x-4)^3\)
\((6-x)^4=(-x+6)^4=(-(x-6))^4=(x-6)^4\)
Вот так. Теперь возвращаем скобки «на место» уже преобразованными.

\(\frac{-(x-4)^3 (x+6)(x-6)^4}{(x+7,5)}\) \(≥0\)

Теперь все скобки выглядят как надо (первым идет иск без знака и только потом число). Но перед числителем появился минус. Убираем его, умножая неравенство на \(-1\), не забыв при этом перевернуть знак сравнения

\(\frac{(x-4)^3 (x+6)(x-6)^4}{(x+7,5)}\) \(≤0\)

Готово. Вот теперь неравенство выглядит как надо. Можно применять метод интервалов.

\(x=4;\) \(x=-6;\) \(x=6;\) \(x=-7,5\)

Расставим точки на оси, знаки и закрасим нужные промежутки.

В промежутке от \(4\) до \(6\), знак не надо менять, потому что скобка \((x-6)\) в четной степени (см. пункт 4 алгоритма). Флажок будет напоминанием о том, что шестерка - тоже решение неравенства.
Запишем ответ.

Ответ : \((-∞;7,5]∪[-6;4]∪\left\{6\right\}\)

Пример. (Задание из ОГЭ) Решите неравенство методом интервалов \(x^2 (-x^2-64)≤64(-x^2-64)\)
Решение:

\(x^2 (-x^2-64)≤64(-x^2-64)\)

Слева и справа есть одинаковые – это явно не случайно. Первое желание – поделить на \(-x^2-64\), но это ошибка, т.к. есть шанс потерять корень. Вместо этого перенесем \(64(-x^2-64)\) в левую сторону

\(x^2 (-x^2-64)-64(-x^2-64)≤0\)

\((-x^2-64)(x^2-64)≤0\)

Вынесем минус в первой скобки и разложим на множители вторую

\(-(x^2+64)(x-8)(x+8)≤0\)

Обратите внимание: \(x^2\) либо равно нулю, либо больше нуля. Значит, \(x^2+64\) – однозначно положительно при любом значении икса, то есть это выражение никак не влияет на знак левой части. Поэтому можно смело делить обе части неравенства на это выражение.
Поделим неравенство так же на \(-1\) , чтобы избавиться от минуса.

\((x-8)(x+8)≥0\)

Теперь можно применять метод интервалов

\(x=8;\) \(x=-8\)

Запишем ответ

Ответ : \((-∞;-8]∪}

← Вернуться

×
Вступай в сообщество «passport13.com»!
ВКонтакте:
Я уже подписан на сообщество «passport13.com»