Что такое агрегатное состояние вещества в физике. Общая характеристика агрегатного состояния вещества

Подписаться
Вступай в сообщество «passport13.com»!
ВКонтакте:

Для того чтобы понять, что такое агрегатное состояние вещества, вспомните или представьте себя летом возле речки с мороженным в руках. Замечательная картинка, правда?

Так вот, в этой идиллии кроме получения удовольствия можно еще осуществить физическое наблюдение. Обратите внимание на воду. В реке она жидкая, в составе мороженного в виде льда - твердая, а в небе в виде облаков - газообразная. То есть она находится одновременно в трех различных состояниях. В физике это называется агрегатным состоянием вещества. Различают три агрегатных состояния - твердое, жидкое и газообразное.

Изменение агрегатных состояний вещества

Изменение агрегатных состояний вещества мы можем наблюдать воочию в природе. Вода с поверхности водоемов испаряется, и образуются облака. Так жидкость переходит в газ. Зимой вода в водоемах замерзает, переходя в твердое состояние, а весной вновь тает, переходя в обратно в жидкость. Что происходит с молекулами вещества при переходе его из одного состояния в другое? Меняются ли они? Отличаются ли, например, молекулы льда от молекул пара? Ответ однозначный: нет. Молекулы остаются абсолютно теми же. Меняется их кинетическая энергия , а соответственно и свойства вещества. Энергия молекул пара достаточно велика, чтобы разлетаться в разные стороны, а при охлаждении пар конденсируется в жидкость, и энергии у молекул все еще достаточно для почти свободного перемещения, но уже недостаточно, чтобы оторваться от притяжения других молекул и улететь. При дальнейшем охлаждении вода замерзает, становясь твердым телом, и энергии молекул уже недостаточно даже для свободного перемещения внутри тела. Они колеблются около одного места, удерживаемые силами притяжения других молекул.

Характер движения и состояния молекул в различных агрегатных состояниях вещества можно отразить на следующей таблице:

Агрегатное состояние вещества

Свойства вещества

Расстояние между частицами

Взаимодействие частиц

Характер движения

Порядок расположения

Не сохраняет форму и объем

Гораздо больше размеров самих частиц

Хаотическое (беспорядочное) непрерывное. Свободно летают, иногда сталкиваясь.

Беспорядочное

Жидкость

Не сохраняет форму, сохраняет объем

Сравнимо с размерами самих частиц

Колеблются около положения равновесия, постоянно перескакивая с одного места на другое.

Беспорядочное

Твердое тело

Сохраняет форму и объем

Мало по сравнению с размерами самих частиц

Очень сильное

Непрерывно колеблются около положения равновесия

В определенном порядке

Процессов, в которых происходит изменение агрегатных состояний веществ, всего шесть.

Переход вещества из твердого состояния в жидкое называется плавлением , обратный процесс - кристаллизацией . Когда вещество переходит из жидкости в газ, это называется парообразованием , из газа в жидкость - конденсацией . Переход из твердого состояния сразу в газ, минуя жидкое, называют сублимацией , обратный процесс - десублимацией .

  • 1. Плавление
  • 2. Кристаллизация
  • 3. Парообразование
  • 4. Конденсация
  • 5. Сублимация
  • 6. Десублимация

Примеры всех этих переходов мы с вами не раз наблюдали в жизни. Лед плавится, образуя воду, вода испаряется, образуя пар. В обратную сторону пар, конденсируясь, переходит снова в воду, а вода, замерзая, становится льдом. А если вы думаете, что вы не знаете процессов сублимации и десублимации, то не спешите с выводами. Запах любого твердого тела - это и есть не что иное, как сублимация. Часть молекул вырывается из тела, образуя газ, который мы и можем унюхать. А пример обратного процесса - это узоры на стеклах зимой, когда пар в воздухе, замерзая, оседает на стекле и образует причудливые узоры.

Агрега́тное состоя́ние - состояние вещества, характеризующееся определёнными качественными свойствами: способностью или неспособностью сохранять объём и форму, наличием или отсутствием дальнего и ближнего порядка и другими. Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других основных физических свойств.
Выделяют три основных агрегатных состояния: твёрдое тело, жидкость и газ. Иногда не совсем корректно к агрегатным состояниям причисляют плазму. Существуют и другие агрегатные состояния, например, жидкие кристаллы или конденсат Бозе - Эйнштейна. Изменения агрегатного состояния это термодинамические процессы, называемые фазовыми переходами. Выделяют следующие их разновидности: из твёрдого в жидкое - плавление; из жидкого в газообразное - испарение и кипение; из твёрдого в газообразное - сублимация; из газообразного в жидкое или твёрдое - конденсация; из жидкого в твёрдое - кристаллизация. Отличительной особенностью является отсутствие резкой границы перехода к плазменному состоянию.
Определения агрегатных состояний не всегда являются строгими. Так, существуют аморфные тела, сохраняющие структуру жидкости и обладающие небольшой текучестью и способностью сохранять форму; жидкие кристаллы текучи, но при этом обладают некоторыми свойствами твёрдых тел, в частности, могут поляризовать проходящее через них электромагнитное излучение. Для описания различных состояний в физике используется более широкое понятие термодинамической фазы. Явления, описывающие переходы от одной фазы к другой, называют критическими явлениями.
Агрегатное состояние вещества зависит от физических условий, в которых оно находится, главным образом от температуры и от давления. Определяющей величиной является отношение средней потенциальной энергии взаимодействия молекул к их средней кинетической энергии. Так, для твёрдого тeла это отношение больше 1, для газов меньше 1, а для жидкостей приблизительно равно 1. Переход из одного агрегатного состояния вещества в другое сопровождается скачкообразным изменением величины данного отношения, связанным со скачкообразным изменением межмолекулярных расстояний и межмолекулярных взаимодействий. В газах межмолекулярные расстояния велики, молекулы почти не взаимодействуют друг с другом и движутся практически свободно, заполняя весь объём. В жидкостях и твёрдых телах -конденсированных средах - молекулы (атомы)расположены значительно ближе друг к другу и взаимодействуют сильнее.
Это приводит к сохранению жидкостями и твёрдыми телами своего объёма. Однако, характер движения молекул в твёрдых телах и жидкостях различен, чем и объясняется различие их структуры и свойств.
У твёрдых тел в кристаллообразном состоянии атомы совершают лишь колебания вблизи узлов кристаллической решётки; структура этих тел характеризуется высокой степенью упорядоченности - дальним и ближним порядком. Тепловое движение молекул (атомов) жидкости представляет собой сочетание малых колебаний около положений равновесия и частых перескоков из одного положения равновесия в другое. Последние и обусловливают существование в жидкостях лишь ближнего порядка в расположении частиц, а также свойственные им подвижность и текучесть.
а. Твёрдое тело - состояние, характеризующееся способностью сохранять объём и форму. Атомы твёрдого тела совершают лишь небольшие колебания вокруг состояния равновесия. Присутствует как дальний, так и ближний порядок.
б. Жидкость - состояние вещества, при котором оно обладает малой сжимаемостью, то есть хорошо сохраняет объём, однако не способно сохранять форму. Жидкость легко принимает форму сосуда, в который она помещена. Атомы или молекулы жидкости совершают колебания вблизи состояния равновесия, запертые другими атомами, и часто перескакивают на другие свободные места. Присутствует только ближний порядок.
Плавление - это переход вещества из твердого агрегатного состояния (см. Агрегатные состояния вещества) в жидкое. Этот процесс происходит при нагревании, когда телу сообщают некоторое количество теплоты +Q. Например, легкоплавкий металл свинец переходит из твердого состояния в жидкое, если его нагреть до температуры 327 С. Свинец запросто плавится на газовой плите, например в ложке из нержавеющей стали (известно, что температура пламени газовой горелки - 600-850°С, а температура плавления стали - 1300-1500°С).
Если, плавя свинец, измерять его температуру, то можно обнаружить, что сначала она плавно возрастает, но после некоторого момента остается постоянной, несмотря на дальнейшее нагревание. Этот момент соответствует плавлению. Температура держится постоянной до тех пор, пока весь свинец не расплавится, и только после этого начинает повышаться снова. При охлаждении жидкого свинца наблюдается обратная картина: температура падает до момента начала затвердевания и остается постоянной все время, пока свинец не перейдет в твердую фазу, а потом вновь понижается.
Аналогичным образом ведут себя все чистые вещества. Постоянство температуры при плавлении имеет большое практическое значение, поскольку позволяет градуировать термометры, изготавливать плавкие предохранители и индикаторы, которые расплавляются при строго заданной температуре.
Атомы в кристалле колеблются около своих положений равновесия. С повышением температуры амплитуда колебаний возрастает и достигает некоторой критической величины, после чего кристаллическая решетка разрушается. Для этого требуется дополнительная тепловая энергия, поэтому в процессе плавления температура не повышается, хотя тепло продолжает поступать.
Температура плавления вещества зависит от давления. Для веществ, у которых объем при плавлении возрастает (а таких подавляющее большинство), повышение давления повышает температуру плавления и наоборот. У воды объем при плавлении уменьшается (поэтому, замерзая, вода разрывает трубы), и при повышении давления лед плавится при более низкой температуре. Аналогичным образом ведут себя висмут, галлий и некоторые марки чугунов.
в. Газ - состояние, характеризующееся хорошей сжимаемостью, отсутствием способности сохранять как объём, так и форму. Газ стремится занять весь объём, ему предоставленный. Атомы или молекулы газа ведут себя относительно свободно, расстояния между ними гораздо больше их размеров.
Часто причисляемая к агрегатным состояниям вещества плазма отличается от газа большой степенью ионизации атомов. Большая часть барионного вещества (по массе ок. 99,9 %) во Вселенной находится в состоянии плазмы.
г. Сверхкритический флюид - Возникает при одновременном повышении температуры и давления до критической точки, в которой плотность газа сравнивается с плотностью жидкости; при этом исчезает граница между жидкой и газообразной фазами. Сверхкритический флюид отличается исключительно высокой растворяющей способностью.
д. Конденсат Бозе - Эйнштейна - получается в результате охлаждения бозе-газа до температур, близких к абсолютному нулю. В результате этого часть атомов оказывается в состоянии со строго нулевой энергией (то есть в низшем из возможных квантовом состоянии). Конденсат Бозе - Эйнштейна проявляет ряд квантовых свойств, таких как сверхтекучесть и резонанс Фишбаха.
е. Фермионный конденсат - представляет собой Бозе-конденсацию в режиме БКШ «атомных куперовских пар» в газах состоящих из атомов-фермионов. (В отличие от традиционного режима бозе-эйнштейновской конденсации составных бозонов).
Такие фермионные атомные конденсаты являются «родственниками» сверхпроводников, но с критической температурой порядка комнатной и выше.
Вырожденная материя - Ферми-газ 1-я стадия Электронно-вырожденный газ, наблюдается в белых карликах, играет важную роль в эволюции звёзд. 2-я стадия нейтронное состояние в него вещество переходит при сверхвысоком давлении, недостижимом пока в лаборатории, но существующем внутри нейтронных звёзд. При переходе в нейтронное состояние электроны вещества взаимодействуют с протонами и превращаются в нейтроны. В результате вещество в нейтронном состоянии полностью состоит из нейтронов и обладает плотностью порядка ядерной. Температура вещества при этом не должна быть слишком высока (в энергетическом эквиваленте не более сотни МэВ).
При сильном повышении температуры (сотни МэВ и выше) в нейтронном состоянии начинают рождаться и аннигилировать разнообразные мезоны. При дальнейшем повышении температуры происходит деконфайнмент, и вещество переходит в состояние кварк-глюонной плазмы. Оно состоит уже не из адронов, а из постоянно рождающихся и исчезающих кварков и глюонов. Возможно, деконфайнмент происходит в два этапа.
При дальнейшем неограниченном повышении давления без повышения температуры вещество коллапсирует в чёрную дыру.
При одновременном повышении и давления, и температуры к кваркам и глюонам добавляются иные частицы. Что происходит с веществом, пространством и временем при температурах, близких к планковской, пока неизвестно.
Другие состояния
При глубоком охлаждении некоторые (далеко не все) вещества переходят в сверхпроводящее или сверхтекучее состояние. Эти состояния, безусловно, являются отдельными термодинамическими фазами, однако их вряд ли стоит называть новыми агрегатными состояниями вещества в силу их неуниверсальности.
Неоднородные вещества типа паст, гелей, суспензий, аэрозолей и т. д., которые при определённых условиях демонстрируют свойства как твёрдых тел, так и жидкостей и даже газов, обычно относят к классу дисперсных материалов, а не к каким-либо конкретным агрегатным состояниям вещества.

Агрегатные состояния. Жидкости. Фазы в термодинамике. Фазовые переходы.

Лекция 1.16

Все вещества могут существовать в трех агрегатных состояниях - твердом, жидком и газообразном . Переходы между ними сопровождаются скачкообразным изменением ряда физических свойств (плотности, теплопроводности и др.).

Агрегатное состояние зависит от физических условий, в которых находится вещество. Существование у вещества нескольких агрегатных состояний обусловлено различиями в тепловом движении его молекул (атомов) и в их взаимодействии при разных условиях.

Газ - агрегатное состояние вещества, в котором частицы не связаны или весьма слабо связаны силами взаимодействия; кинетическая энергия теплового движения его частиц (молекул, атомов) значительно превосходит потенциальную энергию взаимодействий между ними, поэтому частицы движутся почти свободно, целиком заполняя сосуд, в котором находятся, и принимают его форму. В газообразном состоянии вещество не имеет ни собственного объема, ни собственной формы. Любое вещество можно перевести в газообразное, изменяя давление и температуру.

Жидкость - агрегатное состояние вещества, промежуточное между твердым и газообразным. Для нее характерна большая подвижность частиц и малое свободное пространство между ними. Это приводит к тому, что жидкости сохраняют свой объем и принимают форму сосуда. В жидкости молекулы размещаются очень близко друг к другу. Поэтому плотность жидкости гораздо больше плотности газов (при нормальном давлении). Свойства жидкости по всем направлениям одинаковы (изотропны) за исключением жидких кристаллов. При нагревании или уменьшении плотности свойства жидкости, теплопроводность, вязкость меняются, как правило, в сторону сближения со свойствами газов.

Тепловое движение молекул жидкости состоит из сочетания коллективных колебательных движений и происходящих время от времени скачков молекул из одних положений равновесия в другие.

Твердые (кристаллические) тела - агрегатное состояние вещества, характеризующееся стабильностью формы и характером теплового движения атомов. Это движение представляет собой колебания атомов (или ионов), из которых состоит твердое тело. Амплитуда колебаний обычно мала по сравнению с межатомными расстояниями.

Свойства жидкостей.

Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, так же как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако, время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком .



Вследствие плотной упаковки молекул сжимаемость жидкостей, т. е. изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах. Например, для изменения объема воды на 1 % нужно увеличить давление приблизительно в 200 раз. Такое увеличение давления по сравнению с атмосферным достигается на глубине около 2 км.

Жидкости, как и твердые тела, изменяют свой объем при изменении температуры. Для не очень больших интервалов температур относительное изменение объема ΔV / V 0 пропорционально изменению температуры ΔT :

Коэффициент β называют температурным коэффициентом объемногорасширения . Этот коэффициент у жидкостей в десятки раз больше, чем у твердых тел. У воды, например, при температуре 20 °С β в ≈ 2·10 –4 К –1 , у стали - β ст ≈ 3,6·10 –5 К –1 , у кварцевого стекла - β кв ≈ 9·10 –6 К –1 .

Тепловое расширение воды имеет интересную и важную для жизни на Земле аномалию. При температуре ниже 4 °С вода расширяется при понижении температуры (β < 0). Максимум плотности ρ в = 10 3 кг/м 3 вода имеет при температуре 4 °С.

При замерзании вода расширяется, поэтому лед остается плавать на поверхности замерзающего водоема. Температура замерзающей воды подо льдом равна 0 °С. В более плотных слоях воды у дна водоема температура оказывается порядка 4 °С. Благодаря этому, жизнь может существовать в воде замерзающих водоемов.

Наиболее интересной особенностью жидкостей является наличие свободнойповерхности . Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости. Поверхностные молекулы силами межмолекулярного притяжения втягиваются внутрь жидкости. Но все молекулы, в том числе и молекулы пограничного слоя, должны находиться в состоянии равновесия. Это равновесие достигается за счет некоторого уменьшения расстояния между молекулами поверхностного слоя и их ближайшими соседями внутри жидкости. При уменьшении расстояния между молекулами возникают силы отталкивания. Если среднее расстояние между молекулами внутри жидкости равно r 0 , то молекулы поверхностного слоя упакованы несколько более плотно, а поэтому они обладают дополнительным запасом потенциальной энергии по сравнению с внутренними молекулами. Следует иметь в виду, что вследствие крайне низкой сжимаемости наличие более плотно упакованного поверхностного слоя не приводит к сколь нибудь заметному изменению объема жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т. е. увеличить площадь поверхности жидкости), внешние силы должны совершить положительную работу A внеш, пропорциональную изменению ΔS площади поверхности:

A внеш = σΔS .

Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу.

В СИ коэффициент поверхностного натяжения измеряется в джоулях наметр квадратный (Дж/м 2) или в ньютонах на метр(1 Н/м = 1 Дж/м 2).

Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальнойэнергией . Потенциальная энергия E р поверхности жидкости пропорциональна ее площади: (1.16.1)

Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения .

Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т. е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости.

Силы поверхностного натяжения стремятся сократить поверхность пленки. Поэтому можно записать: (1.16.2)

Таким образом, коэффициент поверхностного натяжения σ может быть определен как модуль силы поверхностного натяжения, действующей наединицу длины линии, ограничивающей поверхность (l - длина этой линии).

Из-за действия сил поверхностного натяжения в каплях жидкости и внутри мыльных пузырей возникает избыточное давление Δp . Если мысленно разрезать сферическую каплю радиуса R на две половинки, то каждая из них должна находиться в равновесии под действием сил поверхностного натяжения, приложенных к границе разреза длиной 2πR и сил избыточного давления, действующих на площадь πR 2 сечения (рис.1.16.1). Условие равновесия записывается в виде

Вблизи границы между жидкостью, твердым телом и газом форма свободной поверхности жидкости зависит от сил взаимодействия молекул жидкости с молекулами твердого тела (взаимодействием с молекулами газа (или пара) можно пренебречь). Если эти силы больше сил взаимодействия между молекулами самой жидкости, то жидкость смачивает поверхность твердого тела. В этом случае жидкость подходит к поверхности твердого тела под некоторым острым углом θ, характерным для данной пары жидкость – твердое тело. Угол θ называется краевым углом . Если силы взаимодействия между молекулами жидкости превосходят силы их взаимодействия с молекулами твердого тела, то краевой угол θ оказывается тупым (рис.1.16.2(2)). В этом случае говорят, что жидкость не смачивает поверхность твердого тела. В противном случае (угол - острый) жидкость смачивает поверхность (рис.1.16.2(1)). При полномсмачивании θ = 0, при полном несмачивании θ = 180°.

Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра – капиллярах . Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются.

На рис.1.16.3 изображена капиллярная трубка некоторого радиуса r , опущенная нижним концом в смачивающую жидкость плотности ρ. Верхний конец капилляра открыт. Подъем жидкости в капилляре продолжается до тех пор, пока сила тяжести действующая на столб жидкости в капилляре, не станет равной по модулю результирующей F н сил поверхностного натяжения, действующих вдоль границы соприкосновения жидкости с поверхностью капилляра: F т = F н, где F т = mg = ρh πr 2 g , F н = σ2πr cos θ.

Отсюда следует:

При полном смачивании θ = 0, cos θ = 1. В этом случае

При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h < 0. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр.

Вода практически полностью смачивает чистую поверхность стекла. Наоборот, ртуть полностью не смачивает стеклянную поверхность. Поэтому уровень ртути в стеклянном капилляре опускается ниже уровня в сосуде.

Агрегатные состояния вещества (от латинского aggrego - присоединяю, связываю) - это состояния одного и того же вещества, переходам между которыми соответствуют скачкообразные изменения свободной энергии, энтропии, плотности и других физических параметров вещества.

Газ (французское gaz, происшедшее от греческого chaos - хаос) - это агрегатное состояние вещества, в котором силы взаимодействия его частиц, заполняющих весь предоставленный им объем, пренебрежимо малы. В газах межмолекулярные расстояния велики и молекулы движутся практически свободно.

  • Газы можно рассматривать как значительно перегретые или малонасыщенные пары.
  • Над поверхностью каждой жидкости вследствие испарения находится пар. При повышении давления пара до определенного предела, называемого давлением насыщенного пара, испарение жидкости прекращается, так как давление пара и жидкости становится одинаковым.
  • Уменьшение объема насыщенного пара вызывает конденсацию части пара, а не повышение давления. Поэтому давление пара не может быть выше давления насыщенного пара. Состояние насыщения характеризуется массой насыщения, содержащейся в 1м массой насыщенного пара, которая зависит от температуры. Насыщенный пар может стать ненасыщенным, если увеличивать его объем или повышать температуру. Если температура пара много выше точки кипения, соответствующей данному давлению, пар называется перегретым.

Плазмой называется частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Солнце, звезды, облака межзвездного вещества состоят из газов - нейтральных или ионизованных (плазмы). В отличие от других агрегатных состояний плазма представляет собой газ заряженных частиц (ионов, электронов), которые электрически взаимодействуют друг с другом на больших расстояниях, но не обладают ни ближним, ни дальним порядками в расположении частиц.

Жидкость - это агрегатное состояние вещества, промежуточное между твердым и газообразным.

  1. Жидкостям присущи некоторые черты твердого вещества (сохраняет свой объем, образует поверхность, обладает определенной прочностью на разрыв) и газа (принимает форму сосуда, в котором находится).
  2. Тепловое движение молекул (атомов) жидкости представляет собой сочетание малых колебаний около положений равновесия и частых перескоков из одного положения равновесия в другое.
  3. Одновременно происходят медленные перемещения молекул и их колебания внутри малых объемов, частые перескоки молекул нарушают дальний порядок в расположении частиц и обусловливают текучесть жидкостей, а малые колебания около положений равновесия обусловливают существование в жидкостях ближнего порядка.

Жидкости и твердые вещества, в отличие от газов, можно рассматривать как высоко конденсированные среды. В них молекулы (атомы) расположены значительно ближе друг к другу и силы взаимодействия на несколько порядков больше, чем в газах. Поэтому жидкости и твердые вещества имеют существенно ограниченные возможности для расширения, заведомо не могут занять произвольный объем, а при постоянных давлении и температуре сохраняют свой объем, в каком бы объеме их не размещали. Переходы из более упорядоченного по структуре агрегатного состояния в менее упорядоченное могут происходить и непрерывно. В связи с этим вместо понятия агрегатного состояния целесообразно пользоваться более широким понятием - понятием фазы.

Фазой называется совокупность всех частей системы, обладающих одинаковым химическим составом и находящихся в одинаковом состоянии. Это оправдано одновременным существованием термодинамически равновесных фаз в многофазной системе: жидкости со своим насыщенным паром; воды и льда при температуре плавления; двух несмешивающихся жидкостей (смесь воды с триэтиламином), отличающихся концентрациями; существованием аморфных твердых веществ, сохраняющих структуру жидкости (аморфное состояние).

Аморфное твердое состояние вещества является разновидностью переохлажденного состояния жидкости и отличается от обычных жидкостей существенно большей вязкостью и численными значениями кинетических характеристик.

Кристаллическое твердое состояние вещества - это агрегатное состояние, которое характеризуется большими силами взаимодействия между частицами вещества (атомами, молекулами, ионами). Частицы твердых тел совершают колебания около средних равновесных положений, называемых узлами кристаллической решетки; структура этих веществ характеризуется высокой степенью упорядоченности (дальним и ближним порядком) - упорядоченностью в расположении (координационный порядок), в ориентации (ориентационный порядок) структурных частиц, или упорядоченностью физических свойств (например, в ориентации магнитных моментов или электрических дипольных моментов). Область существования нормальной жидкой фазы для чистых жидкостей, жидкого и жидких кристаллов ограничена со стороны низких температур фазовыми переходами соответственно в твердое (кристаллизацией), сверхтекучее и жидко-анизотропное состояние.

Вопросы о том, что такое агрегатное состояние, какими особенностями и свойствами обладают твердые вещества, жидкости и газы, рассматриваются в нескольких учебных курсах. Существует три классических состояния материи, со своими характерными чертами строения. Их понимание является важным моментом в постижении наук о Земле, живых организмах, производственной деятельности. Эти вопросы изучают физика, химия, география, геология, физическая химия и другие научные дисциплины. Вещества, находящиеся при определенных условиях в одном из трех базовых типов состояния, могут изменяться при повышении или понижении температуры, давления. Рассмотрим возможные переходы из одних агрегатных состояний в другие, как они осуществляются в природе, технике и повседневной жизни.

Что такое агрегатное состояние?

Слово латинского происхождения "aggrego" в переводе на русский язык означает «присоединять». Научный термин относится к состоянию одного и того же тела, вещества. Существование при определенных температурных значениях и разном давлении твердых тел, газов и жидкостей характерно для всех оболочек Земли. Помимо трех базовых агрегатных состояний, существует еще и четвертое. При повышенной температуре и неизменном давлении газ превращается в плазму. Чтобы лучше понять, что такое агрегатное состояние, необходимо вспомнить о мельчайших частицах, из которых состоят вещества и тела.

На схеме вверху показаны: а — газ; b — жидкость; с — твердое тело. На подобных рисунках кружочками обозначаются структурные элементы веществ. Это условное обозначение, на самом деле атомы, молекулы, ионы не являются сплошными шариками. Атомы состоят из положительно заряженного ядра, вокруг которого на большой скорости движутся отрицательно заряженные электроны. Знания о микроскопическом строении вещества помогают лучше понять различия, существующие между разными агрегатными формами.

Представления о микромире: от Древней Греции до XVII века

Первые сведения о частицах, из которых сложены физические тела, появились в Древней Греции. Мыслители Демокрит и Эпикур ввели такое понятие, как атом. Они считали, что эти мельчайшие неделимые частицы разных веществ обладают формой, определенными размерами, способны к движению и взаимодействию друг с другом. Атомистика стала наиболее передовым для своего времени учением Древней Греции. Но ее развитие затормозилось в средние века. Так как тогда ученых преследовала инквизиция римской католической церкви. Поэтому вплоть до нового времени не было внятной концепции, что такое агрегатное состояние вещества. Только после XVII века ученые Р. Бойль, М. Ломоносов, Д. Дальтон, А. Лавуазье сформулировали положения атомно-молекулярной теории, не утратившие своего значения и в наши дни.

Атомы, молекулы, ионы — микроскопические частицы строения материи

Значительный прорыв в понимании микромира произошел в XX веке, когда был изобретен электронный микроскоп. С учетом открытий, сделанных учеными ранее, удалось сложить стройную картину микромира. Теории, описывающие состояние и поведение мельчайших частиц вещества, довольно сложные, они относятся к области Для понимания особенностей разных агрегатных состояний материи достаточно знать названия и особенности основных структурных частиц, которые образуют разные вещества.

  1. Атомы — химически неделимые частицы. Сохраняются в химических реакциях, но разрушаются в ядерных. Металлы и многие другие вещества атомарного строения имеют твердое агрегатное состояние при обычных условиях.
  2. Молекулы — частицы, которые разрушаются и образуются в химических реакциях. кислород, вода, углекислый газ, сера. Агрегатное состояние кислорода, азота, диоксидов серы, углерода, кислорода при обычных условиях — газообразное.
  3. Ионы — заряженные частицы, в которые превращаются атомы и молекулы, когда присоединяют или теряют электроны — микроскопические отрицательно заряженные частички. Ионное строение имеют многие соли, например поваренная, железный и медный купорос.

Есть вещества, частицы которых определенным образом расположены в пространстве. Упорядоченное взаимное положение атомов, ионов, молекул называют кристаллической решеткой. Обычно ионные и атомарные кристаллические решетки характерны для твердых веществ, молекулярные - для жидкостей и газов. Высокой твердостью отличается алмаз. Его атомная кристаллическая решетка образована атомами углерода. Но мягкий графит тоже состоит из атомов этого химического элемента. Только они по-другому расположены в пространстве. Обычное агрегатное состояние серы — твердое, но при высоких температурах вещество превращается в жидкость и аморфную массу.

Вещества в твердом агрегатном состоянии

Твердые тела при обычных условиях сохраняют объем и форму. Например, песчинка, крупинка сахара, соли, кусок горной породы или металла. Если нагревать сахар, то вещество начинает плавиться, превращаясь в вязкую коричневую жидкость. Прекратим нагревание — снова получим твердое вещество. Значит, одно из главных условий перехода твердого тела в жидкость — его нагревание или повышение внутренней энергии частиц вещества. Твердое агрегатное состояние соли, которую используют в пищу, тоже можно изменить. Но чтобы расплавить поваренную соль, нужна более высокая температура, чем при нагревании сахара. Дело в том, что сахар состоит из молекул, а поваренная соль - из заряженных ионов, которые сильнее притягиваются друг к другу. Твердые вещества в жидком виде не сохраняют свою форму, потому что кристаллические решетки разрушаются.

Жидкое агрегатное состояние соли при расплавлении объясняется разрывом связи между ионами в кристаллах. Освобождаются заряженные частички, которые могут переносить электрические заряды. Расплавы солей проводят электричество, являются проводниками. В химической, металлургической и машиностроительной промышленности твердые вещества превращают в жидкие для получения из них новых соединений или придания им разной формы. Большое распространение получили сплавы металлов. Есть несколько способов их получения, связанных с изменениями агрегатного состояния твердого сырья.

Жидкость — одно из базовых агрегатных состояний

Если налить в круглодонную колбу 50 мл воды, то можно заметить, что вещество сразу же примет форму химического сосуда. Но как только мы выльем воду из колбы, то жидкость сразу же растечется по поверхности стола. Объем воды останется тот же — 50 мл, а ее форма изменится. Перечисленные особенности характерны для жидкой формы существования материи. Жидкостями являются многие органические вещества: спирты, растительные масла, кислоты.

Молоко — эмульсия, т. е. жидкость, в которой находятся капельки жира. Полезное жидкое ископаемое — нефть. Добывают ее из скважин с помощью буровых вышек на суше и в океане. Морская вода тоже является сырьем для промышленности. Ее отличие от пресной воды рек и озер заключается в содержании растворенных веществ, в основном солей. При испарении с поверхности водоемов в парообразное состояние переходят только молекулы Н 2 О, растворенные вещества остаются. На этом свойстве основаны методы получения полезных веществ из морской воды и способы ее очистки.

При полном удалении солей получают дистиллированную воду. Она кипит при 100 °С, замерзает при 0 °С. Рассолы кипят и превращаются в лед при других температурных показателях. Например, вода в Северном Ледовитом океане замерзает при температуре на поверхности 2 °С.

Агрегатное состояние ртути при обычных условиях — жидкость. Этим серебристо-серым металлом обычно заполняют медицинские термометры. При нагревании столбик ртути поднимается по шкале, происходит расширение вещества. Почему же в используется подкрашенный красной краской спирт, а не ртуть? Объясняется это свойствами жидкого металла. При 30-градусных морозах агрегатное состояние ртути меняется, вещество становится твердым.

Если медицинский термометр разбился, а ртуть вылилась, то собирать руками серебристые шарики опасно. Вредно вдыхать пары ртути, это вещество очень токсичное. Детям в таких случаях надо обратиться за помощью к родителям, взрослым.

Газообразное состояние

Газы не способны сохранять ни свой объем, ни форму. Заполним колбу доверху кислородом (его химическая формула О 2) . Как только мы откроем колбу, молекулы вещества начнут смешиваться с воздухом в помещении. Это происходит благодаря броуновскому движению. Еще древнегреческий ученый Демокрит считал, что частички вещества находятся в постоянном движении. В твердых телах при обычных условиях у атомов, молекул, ионов нет возможности покинуть кристаллическую решетку, освободиться от связей с другими частицами. Такое возможно только при поступлении большого количества энергии извне.

В жидкостях расстояние между частицами немного больше, чем в твердых телах, им требуется меньше энергии для разрыва межмолекулярных связей. К примеру, жидкое агрегатное состояние кислорода наблюдается только при снижении температуры газа до −183 °C. При −223 °C молекулы О 2 образуют твердое вещество. При повышении температуры сверх приведенных значений кислород превращается в газ. Именно в таком виде он находится при обычных условиях. На промышленных предприятиях действуют специальные установки для разделения воздуха атмосферы и получения из него азота и кислорода. Сначала воздух охлаждают и сжижают, а затем постепенно повышают температуру. Азот и кислород превращаются в газы при разных условиях.

Атмосфера Земли содержит 21 % по объему кислорода и 78 % азота. В жидком виде эти вещества в газовой оболочке планеты не встречаются. Жидкий кислород имеет светло-синий цвет, им при высоком давлении заполняют баллоны для использования в медицинских учреждениях. В промышленности и строительстве сжиженные газы необходимы для проведения очень многих процессов. Кислород нужен для газовой сварки и резки металлов, в химии — для реакций окисления неорганических и органических веществ. Если открыть вентиль кислородного баллона, давление уменьшается, жидкость превращается в газ.

Сжиженные пропан, метан и бутан находят широкое применение в энергетике, на транспорте, в промышленности и хозяйственно-бытовой деятельности населения. Получают эти вещества из природного газа или при крекинге (расщеплении) нефтяного сырья. Углеродные жидкие и газообразные смеси играют важную роль в экономике многих стран. Но запасы нефти и природного газа сильно истощены. По оценкам ученых, этого сырья хватит на 100-120 лет. Альтернативный источник энергии - воздушный поток (ветер). Используются для работы электростанций быстротекущие реки, приливы на берегах морей и океанов.

Кислород, как и другие газы, может находиться в четвертом агрегатном состоянии, представляя собой плазму. Необычный переход из твердого состояния в газообразное — характерная черта кристаллического йода. Вещество темно-фиолетового цвета подвергается сублимации — превращается в газ, минуя жидкое состояние.

Как осуществляются переходы из одной агрегатной формы материи в другую?

Изменения агрегатного состояния веществ не связаны с химическими превращениями, это физические явления. При повышении температуры многие твердые тела плавятся, превращаются в жидкости. Дальнейшее повышение температуры может привести к испарению, то есть к газообразному состоянию вещества. В природе и хозяйстве такие переходы характерны для одного из главных веществ на Земле. Лед, жидкость, пар — это состояния воды при разных внешних условиях. Соединение одно и то же, его формула — Н 2 О. При температуре 0 °С и ниже этого значения вода кристаллизуется, то есть превращается в лед. При повышении температуры возникшие кристаллики разрушаются — лед тает, вновь получается жидкая вода. При ее нагревании образуется Испарение — превращение воды в газ — идет даже при низких температурах. Например, замерзшие лужи постепенно исчезают, потому что вода испаряется. Даже в морозную погоду мокрое белье высыхает, но только процесс этот более длительный, чем в жаркий день.

Все перечисленные переходы воды из одного состояния в другое имеют огромное значение для природы Земли. Атмосферные явления, климат и погода связаны с испарением воды с поверхности Мирового океана, переносом влаги в виде облаков и тумана на сушу, выпадением осадков (дождя, снега, града). Эти явления составляют основу Мирового круговорота воды в природе.

Как меняются агрегатные состояния серы?

При обычных условиях сера — это яркие блестящие кристаллы или светло-желтый порошок, т. е. это твердое вещество. Агрегатное состояние серы меняется при нагревании. Сначала при повышении температуры до 190 °C желтое вещество плавится, превращаясь в подвижную жидкость.

Если быстро вылить жидкую серу в холодную воду, то получается коричневая аморфная масса. При дальнейшем нагревании расплава серы он становится все более вязким, темнеет. При температуре свыше 300 °C агрегатное состояние серы снова изменяется, вещество приобретает свойства жидкости, становится подвижным. Эти переходы возникают благодаря способности атомов элемента образовывать цепочки разной длины.

Почему вещества могут находиться в разных физических состояниях?

Агрегатное состояние серы — простого вещества — твердое при обычных условиях. Диоксид серы — газ, серная кислота — маслянистая жидкость тяжелее воды. В отличие от соляной и азотной кислот она не летучая, с ее поверхности не испаряются молекулы. Какое агрегатное состояние имеет пластическая сера, которую получают при нагревании кристаллов?

В аморфном виде вещество имеет структуру жидкости, обладая незначительной текучестью. Но пластическая сера одновременно сохраняет форму (как твердое вещество). Существуют жидкие кристаллы, обладающие рядом характерных свойств твердых веществ. Таким образом, состояние вещества при разных условиях зависит от его природы, температуры, давления и других внешних условий.

Какие существуют особенности в строении твердых тел?

Имеющиеся различия между основными агрегатными состояниями материи объясняются взаимодействием между атомами, ионами и молекулами. Например, почему твердое агрегатное состояние вещества приводит к способности тел сохранять объем и форму? В кристаллической решетке металла или соли структурные частицы притягиваются другу к другу. В металлах положительно заряженные ионы взаимодействуют с так называемым «электронным газом» — скоплением свободных электронов в куске металла. Кристаллы солей возникают благодаря притяжению разноименно заряженных частиц — ионов. Расстояние между вышеперечисленными структурными единицами твердых тел намного меньше, чем размеры самих частиц. В этом случае действует электростатическое притяжение, оно придает прочность, а отталкивание недостаточно сильное.

Чтобы разрушить твердое агрегатное состояние вещества, надо приложить усилия. Металлы, соли, атомные кристаллы плавятся при очень высоких температурах. К примеру, железо становится жидким при температуре выше 1538 °С. Тугоплавким является вольфрам, из него изготавливают нити накаливания для электрических лампочек. Есть сплавы, которые становятся жидкими при температурах свыше 3000 °С. Многие на Земле находятся в твердом состоянии. Добывают это сырье с помощью техники в шахтах и карьерах.

Для отрыва даже одного иона от кристалла необходимо затратить большое количество энергии. Но ведь достаточно растворить соль в воде, чтобы кристаллическая решетка распалась! Это явление объясняется удивительными свойствами воды как полярного растворителя. Молекулы Н 2 О взаимодействуют с ионами соли, разрушая химическую связь между ними. Таким образом, растворение — это не простое перемешивание разных веществ, а физико-химическое взаимодействие между ними.

Как взаимодействуют молекулы жидкостей?

Вода может быть жидкостью, твердым веществом и газом (паром). Это ее основные агрегатные состояния при обычных условиях. Молекулы воды состоят из одного атома кислорода, с которым связаны два атома водорода. Возникает поляризация химической связи в молекуле, на атомах кислорода появляется частичный отрицательный заряд. Водород становится положительным полюсом в молекуле, притягивается атомом кислорода другой молекулы. Это получило название «водородная связь».

Жидкое агрегатное состояние характеризуют расстояния между структурными частицами, сравнимые с их размерами. Притяжение существует, но оно слабое, поэтому вода не сохраняет форму. Парообразование происходит из-за разрушения связей, которое идет на поверхности жидкости даже при комнатной температуре.

Существуют ли межмолекулярные взаимодействия в газах?

Газообразное состояние вещества по ряду параметров отличается от жидкого и твердого. Между структурными частицами газов существуют большие промежутки, намного превышающие размеры молекул. При этом силы притяжения совсем не действуют. Газообразное агрегатное состояние характерно для веществ, присутствующих в составе воздуха: азота, кислорода, диоксида углерода. На рисунке ниже первый куб заполнен газом, второй жидкостью, а третий — твердым вещество.

Многие жидкости являются летучими, с их поверхности отрываются и переходят в воздух молекулы вещества. Например, если к отверстию открытой бутылки с соляной кислотой поднести ватку, смоченную в нашатырном спирте, то появляется белый дым. Прямо в воздухе происходит химическая реакция между соляной кислотой и аммиаком, получается хлорид аммония. В каком агрегатном состоянии находится это вещество? Его частички, образующие белый дым, представляют собой мельчайшие твердые кристаллы соли. Этот опыт надо проводить под вытяжкой, вещества являются токсичными.

Заключение

Агрегатное состояние газа изучали многие выдающиеся физики и химики: Авогадро, Бойль, Гей-Люссак, Клайперон, Менделеев, Ле-Шателье. Ученые сформулировали законы, объясняющие поведение газообразных веществ в химических реакциях, при изменении внешних условий. Открытые закономерности не только вошли в школьные и вузовские учебники физики и химии. Многие химические производства основаны на знаниях о поведении и свойствах веществ, находящихся в разных агрегатных состояниях.

← Вернуться

×
Вступай в сообщество «passport13.com»!
ВКонтакте:
Я уже подписан на сообщество «passport13.com»