Воздействие ферментов на организм человека. Что такое ферменты и их значение для здоровья

Подписаться
Вступай в сообщество «passport13.com»!
ВКонтакте:

В природе существуют особые вещества белковой природы, одинаково успешно функционирующие как в живой клетке, так и за её пределами. Это ферменты. С их помощью организм переваривает пищу, выращивает и разрушает клетки, благодаря им эффективно работают все системы нашего организма и, в первую очередь, центральная нервная система. Без ферментов в мире не существовало бы йогурта, кефира, сыра, брынзы, кваса, готовых каш, детского питания. Из чего состоят и как устроены эти биокатализаторы, недавно ставшие верными помощниками биотехнологов, как их отличают друг от друга, как они облегчают нашу жизнь, об этом вы узнаете из этого урока.

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.

4. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. - 5-е изд., стереотип. - Дрофа, 2010. - 388 с.

5. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.


Впервые термин "фермент" предложил голландский естествоиспытатель Ван-Гельмонт, обозначивший им неизвестный агент, способствующий спиртовому брожению. В переводе с латинского языка фермент означает «закваска», синоним этого слова в греческом языке - энзим, что означает «в дрожжах». Оба слова связаны с дрожжевым брожением, которое невозможно без участия ферментов, играющих ключевую роль в бродильных процессах - химических реакциях, связанных с перевариванием и расщеплением сахаров. По своей природе ферменты являются биологическими катализаторами химических и биохимических реакций, которые протекают внутри клеток. Химические реакции могут протекать и без участия ферментов, но часто для этого требуются определенные условия: высокая температура, давление, присутствие металлов (железа, цинка, меди и платины и т.д.), которые также могут выступать в качестве катализаторов - ускорителей химических реакций, но скорость их без ферментов будет очень небольшой.

Ферменты в нашем организме выступают в роли биологических катализаторов, ускоряя биохимические реакции в сотни и тысячи раз, они способствуют полноценному пищеварению, усвоению питательных веществ и очищению организма. Ферменты принимают участие в осуществлении практически всех процессов жизнедеятельности организма: способствуют восстановлению эндоэкологического баланса, поддерживают систему кроветворения, снижают тромбообразование, нормализуют вязкость крови, улучшают микроциркуляцию, а также снабжение тканей кислородом и питательными веществами, нормализуют липидный обмен, снижают синтез холестерина низкой плотности. Во всех жизненно важных биохимических реакциях участвуют более трех тысяч известных к настоящему времени ферментов. Ферментная недостаточность, вызванная генетическими нарушениями или иными физиологическими причинами, приводит к нарушению здоровья и серьезным заболеваниям.

Многие ферменты могут работать как разрушители и восстановители, в зависимости от обстоятельств, расщепляя биомолекулы на фрагменты или вновь соединяя вместе продукты распада. В человеческом организме непрерывно работают тысячи различных ферментов. Только с их помощью возможно обновление клеток, трансформация питательных веществ в энергию и строительные материалы, обезвреживание отходов метаболизма и чужеродных веществ, защита организма от болезнетворных микроорганизмов и заживление ран. В зависимости от того, какие виды реакций организма катализируют энзимы, они выполняют различные функции, чаще всего их подразделяют на пищеварительные и метаболические .

Пищеварительные выделяются в желудочно-кишечном тракте, разрушают питательные вещества, способствуя их попаданию в системный кровоток. Только при наличии ферментов происходит метаболизм жиров, белков и углеводов. Ферменты никогда не заменяют друг друга, каждый из них имеет свою функцию, основными пищеварительными ферментами являются амилаза , протеаза илипаза .

*Амилаза - гидролитический фермент, образуется преимущественно в слюнных железах и поджелудочной железе, поступает затем соответственно в полость рта или просвет двенадцатиперстной кишки и способствует утилизации глюкозы из крови. Амилаза участвует в переваривании углеводов пищи, разлагает сложные углеводы - крахмал и гликоген, обеспечивает сохранение нормальных показателей сахара крови. В настоящее время доказано, что 86% больных сахарным диабетом имеют недостаточное содержание амилазы в кишечнике. Различные типы амилаз действуют на определенные сахара: лактаза расщепляет молочный сахар - лактозу, мальтаза - мальтозу, сукраза расщепляет свекловичный сахар сахарозу.

*Липаза присутствует в желудочном соке, в секрете поджелудочной железы, а также в пищевых жирах и является важнейшим ферментом в процессе переваривания жиров, она синтезируется в поджелудочной железе и выделяется в кишечник, где расщепляет жиры, поступающие с пищей и гидролизирует молекулы жиров. Активность липазы значительно изменяется при заболеваниях поджелудочной железы, при онкологических заболеваниях и при неправильном питании.

Метаболические ферменты (энзимы) катализируют биохимические процессы внутри клеток, при которых происходит как выработка энергии, так и детоксикация организма и вывод отработанных продуктов распада. Каждая система, орган и ткань организма имеет свою сеть ферментов.

Ферменты и обмен веществ

Обмен веществ в организме человека складывается из двух процессов. Первый процесс - «анаболизм», что означает усвоение необходимых веществ и энергии. Второй процесс - «катаболизм» - распад отработанных продуктов жизнедеятельности организма. Эти важнейшие процессы находятся в постоянном взаимодействии, поддерживая жизнедеятельность организма.

*Нервная система - первая регулирующая система поддержания равновесия обменных процессов, она обрабатывает информацию, поступающую от всех систем, органов и тканей организма. Учитывая характер информации обменных процессов, нервная система принимает то или иное решение, задает ту или иную программу действия.

*Эндокринная система - вторая регулирующая система, благодаря вырабатываемым ею гормонам, активизируются или замедляются все процессы, протекающие в органах и тканях организма.

*Кровеносная система - третья система, регулирующая обмен веществ, поскольку посредством крови производится перенос гормонов и питательных веществ - витаминов, макроэлементов и минеральных солей.

Все эти системы реализуют свою программу через цепочку различных ферментов, благодаря которым человек может адекватно адаптироваться к изменяющимся условиям внешней и внутренней среды. Все ферменты являются белками, состоящими из аминокислот, небелковая часть молекулы фермента называется «коферментом», в неё могут входить микроэлементы и витамины. Все биохимические реакции с участием ферментов происходят в водной среде, в которой, как в коконе, находится наш организм. Часть ферментов входит в состав плазматической мембраны клеток, другие находятся и работают внутри клеток, третьи секретируются клетками и выходят в межклеточное пространство органов и тканей, попадают в кровеносную и лимфатическую систему или в просвет желудка, тонкой и толстой кишки.

Благодаря действию ферментов организм запасается железом, кровь свертывается при кровотечениях, мочевая кислота превращается в мочу, окись углерода удаляется из легких. Ферменты помогают печени, почкам, легким и желудочно-кишечному тракту выводить из организма продукты жизнедеятельности и токсины, способствуют использованию питательных веществ, построению новых мышечных тканей, нервных клеток, костей, кожи, восстановлению тканей желез внутренней секреции.

Ферменты принимают участие в осуществлении практически всех процессов жизнедеятельности организма: способствуют восстановлению экологического баланса организма, улучшают работу иммунной системы, регулируют выработку интерферонов, проявляют противовирусное и противомикробное действие, снижают вероятность развития аллергических и аутоиммунных реакций. Они также оказывают поддержку системе кроветворения, снижают агрегацию тромбоцитов, нормализуют вязкость крови, улучшают микроциркуляцию, а также снабжение тканей кислородом и питательными веществами. Комплексное воздействие ферментов улучшает процесс переваривания и усвоения пищи, нормализует липидный обмен, снижает синтез холестерина, повышает содержание холестерина высокой плотности, а также уменьшает побочные эффекты, связанные с приемом антибиотиков и гормональных препаратов.

Ферменты, коэнзимы и микроэлементы

В организме человека насчитывают около 3000 различных ферментов, структура которых закодирована в генетике каждого индивидуума. Основной функциональной характеристикой каждого фермента является скорость, с которой он работает, разрушая, трансформируя или синтезируя те или иные вещества. Функции ферментов строго индивидуальны и каждый из них принимает участие в активизации конкретного биохимического процесса. Со временем ферменты теряют свою эффективность и поэтому должны постоянно обновляться. Активность ферментов зависит от очень многих внешних факторов: при понижении температуры скорость химических реакций уменьшается, при повышении температуры скорость химических реакций сначала увеличивается, но затем начинает уменьшаться, поскольку при высоких температурах, близких к кипению, происходит денатурация - разрушение белковых молекул фермента. В состав ферментов входят некоторые микроэлементы - медь, железо, цинк, никель, селен, кобальт, марганец и др. Без молекул минеральных веществ ферменты не активны и не могут катализировать биохимические реакции. Активация ферментов происходит посредством присоединения к их молекулам атомов минеральных веществ, при этом присоединенный атом неорганического вещества становится активным центром всего ферментативного комплекса, например:

*Железо входит в состав важных окислительных ферментов - каталазы, пероксидазы, цитохромов углерода и азота, оно соединяет между собой атомы, благодаря чему из аминокислот образуются белковые молекулы, кроме того, железо из молекулы гемоглобина способно связывать кислород, чтобы переносить его к тканям;

*Цинк способен соединять между собой атомы кислорода и азота, а также атомы серы, поэтому пищеварительные ферменты пепсин и трипсин для активации требуют присоединения атома цинка;

*Медь обладает способностью разрывать или восстанавливать связи между атомами углерода и серы;

*Кобальт способен и разрушать, и восстанавливать химическую связь между атомами углерода;

*Молибден входит в состав азотфиксирующих ферментов и способен переводить в связанное состояние атмосферный азот, который является достаточно инертным веществом и с большим трудом вступает в биохимические реакции.

Многие ферменты с большой молекулярной массой проявляют каталитическую активность только в присутствии специфических низкомолекулярных веществ, называемых коферментами (коэнзимами), роль коэнзимов играют многие витамины и минеральные вещества, которые входят в состав активного центра фермента и обеспечивают его работу. Особую роль в организме человека играет коэнзим Q10 - непосредственный участник процессов, направленных на выработку энергии в организме человека. Коэнзим Q10 представляет собой клеточный компонент, участвующий в производстве энергии в митохондриях - внутриклеточных электростанциях, и играет важную роль в образовании организмом аденозинтрифосфорной кислоты (АТФ), являющейся первоисточником энергии в мышечных тканях. Коэнзим Q10 повышает устойчивость мышечной ткани к пиковым нагрузкам, снижает токсический и болевой эффект гипоксии, ускоряет обменные процессы и выведение конечных продуктов обмена веществ. По результатам экспериментальных и клинических исследований сделаны выводы о том, что Коэнзим Q10 также обладает свойствами эффективного антиоксиданта и защитника от преждевременного старения, он способен не только продлить жизнь, но и насытить ее энергией.

Учитывая сказанное выше, можно сделать выводы, что для полноценной функции ферментов необходимо постоянное и непрерывное поступление в организм витаминов, макро- и микроэлементов в составе пищи. Только в этом случае ферменты и ферментные системы организма будут успешно функционировать.

КЛИНИЧЕСКИЕ ИСПЫТАНИЯ ФЕРМЕНТОВ

Исследования последних десятилетий доказали, что ферменты необходимы для нормального функционирования иммунной системы организма: они регулируют выработку интерферонов, проявляют противовирусное и противомикробное действие, а также снижают вероятность развития аллергических и аутоиммунных реакций. Защитные механизмы способны сохранить организм человека здоровым только в том случае, если в организме имеется достаточное количество функционирующих ферментов. Каждый фермент в организме выполняет свою задачу: одни ферменты позволяют организму защищаться путем активизации макрофагов - лейкоцитов, способных распознавать и уничтожать в организме врагов. Другие ферменты помогают лимфоцитам создавать специфические антитела, которые связывают «чужеродных агентов» - бактериальных, вирусных и прочих, давая организму возможность своевременно их обезвредить. Важнейшую роль в здоровье иммунной системы играют протеолитические ферменты, в частности, протеаза , которая активно участвует в процессах метаболизма и пищеварения, она способна разрушать практически любые белки, которые не являются компонентами живых клеток организма - белковые структуры вирусов, бактерий и прочих патогенов. Протеазные ферменты оказались великолепной противовирусной терапией, работающей на нескольких уровнях. Многие вирусы окружены защитной протеиновой оболочкой, которую протеаза способна переварить, в результате вирусы становятся более уязвимыми к действию антивирусных препаратов. Кроме того, протеаза расщепляет непереваренный белок, клеточные обломки и токсины крови, в результате иммунная система активизируется к борьбе с бактериальными и вирусными инфекциями.

Самая распространенная хроническая вирусная инфекция человека - герпес, в переводе с греческого языка - «ползучий», еще Геродот использовал это название при описании пузырьковых высыпаний на коже, сопровождающихся зудом и лихорадкой. Статистика утверждает, что 90% населения Земли являются носителями герпетической инфекции. Герпетическая инфекция длительно существует в организме преимущественно в латентной форме и проявляется на фоне иммунодефицитных состояний поражениями кожи, слизистых оболочек, глаз, печени и центральной нервной системы.

В 1995 европейскими учеными впервые были опубликованы результаты исследования ферментной терапии в качестве альтернативного лечения герпеса Зостер - вируса ветрянки и опоясывающего лишая. Исследования проводились с группой из 192 пациентов, половина которой получала стандартный противовирусный препарат Ацикловир, а вторая половина - ферментную терапию. В результате исследований был сделан вывод о том, что в целом ферментные препараты показали эффективность, идентичную действию ацикловира. С 1968 года в западных странах вирус герпеса Зостер успешно лечится с помощью ферментов.

Заключение: Ферменты имеют широкий спектр применения и могут быть рекомендованы не только для улучшения пищеварения, при острых и хронических воспалительных процессах в желудочно-кишечном тракте и печени, но и при инфекционных заболеваниях, сосудистой патологии, состояниях до и после оперативных вмешательств. На сегодняшний день проводятся многочисленные исследования, подтверждающие эффективность ферментов в профилактике и оздоровлении при онкозаболеваниях.

компании Nutricare рекомендуется:

Для полноценного усвоения белковой пищи: Папаин, Бромелайн, Протеаза улучшают самочувствие при различных заболеваниях пищеварительного тракта, расщепляют сложные белки до аминокислот, Протеаза также способна разрушать практически любые белки, которые не являются компонентами живых клеток организма - белковые структуры вирусов, бактерий и прочих патогенов;

Для полноценного усвоения жиров: Бромелайн и Липаза выделяются в кишечник, где расщепляют жиры, поступающие с пищей, кроме того, Бромелайн воздействует на молекулы жировой ткани, не позволяя им связываться между собой и откладываться в жировое депо и участвует в расщеплении жиров, что делает его незаменимым при лечении ожирения;

Для полноценного усвоения углеводов: Амилаза участвует в переваривании углеводов пищи, разлагает сложные углеводы - крахмал и гликоген, обеспечивает сохранение нормальных показателей сахара крови. В настоящее время доказано, что 86% больных сахарным диабетом имеют недостаточное содержание амилазы в кишечнике;

При заболеваниях желудочно-кишечного тракта(запоры, гастрит, колит, язвенная болезнь желудка, глистные инвазии): Ферментный комплекс необходим для восстановления пищеварения при ферментной недостаточности, дисбактериозе, диспепсии и практически при всех заболеваниях органов пищеварения.

ФЕРМЕНТЫ
органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются катализаторами. Ферменты (от лат. fermentum - брожение, закваска) иногда называют энзимами (от греч. en - внутри, zyme - закваска). Все живые клетки содержат очень большой набор ферментов, от каталитической активности которых зависит функционирование клеток. Практически каждая из множества разнообразных реакций, протекающих в клетке, требует участия специфического фермента. Изучением химических свойств ферментов и катализируемых ими реакций занимается особая, очень важная область биохимии - энзимология. Многие ферменты находятся в клетке в свободном состоянии, будучи просто растворены в цитоплазме; другие связаны со сложными высокоорганизованными структурами. Есть и ферменты, в норме находящиеся вне клетки; так, ферменты, катализирующие расщепление крахмала и белков, секретируются поджелудочной железой в кишечник. Секретируют ферменты и многие микроорганизмы. Первые данные о ферментах были получены при изучении процессов брожения и пищеварения. Большой вклад в исследование брожения внес Л. Пастер, однако он полагал, что соответствующие реакции могут осуществлять только живые клетки. В начале 20 в. Э. Бухнер показал, что сбраживание сахарозы с образованием диоксида углерода и этилового спирта может катализироваться бесклеточным дрожжевым экстрактом. Это важное открытие послужило стимулом к выделению и изучению клеточных ферментов. В 1926 Дж. Самнер из Корнеллского университета (США) выделил уреазу; это был первый фермент, полученный в практически чистом виде. С тех пор обнаружено и выделено более 700 ферментов, но в живых организмах их существует гораздо больше. Идентификация, выделение и изучение свойств отдельных ферментов занимают центральное место в современной энзимологии. Ферменты, участвующие в фундаментальных процессах превращения энергии, таких, как расщепление сахаров, образование и гидролиз высокоэнергетического соединения аденозинтрифосфата (АТФ), присутствуют в клетках всех типов - животных, растительных, бактериальных. Однако есть ферменты, которые образуются только в тканях определенных организмов. Так, ферменты, участвующие в синтезе целлюлозы, обнаруживаются в растительных, но не в животных клетках. Таким образом, важно различать "универсальные" ферменты и ферменты, специфичные для тех или иных типов клеток. Вообще говоря, чем более клетка специализирована, тем больше вероятность, что она будет синтезировать набор ферментов, необходимый для выполнения конкретной клеточной функции.
Ферменты как белки. Все ферменты являются белками, простыми или сложными (т.е. содержащими наряду с белковым компонентом небелковую часть).
См. также БЕЛКИ . Ферменты - крупные молекулы, их молекулярные массы лежат в диапазоне от 10 000 до более 1 000 000 дальтон (Да). Для сравнения укажем мол. массы известных веществ: глюкоза - 180, диоксид углерода - 44, аминокислоты - от 75 до 204 Да. Ферменты, катализирующие одинаковые химические реакции, но выделенные из клеток разных типов, различаются по свойствам и составу, однако обычно обладают определенным сходством структуры. Структурные особенности ферментов, необходимые для их функционирования, легко утрачиваются. Так, при нагревании происходит перестройка белковой цепи, сопровождающаяся потерей каталитической активности. Важны также щелочные или кислотные свойства раствора. Большинство ферментов лучше всего "работают" в растворах, pH которых близок к 7, когда концентрация ионов H+ и OH- примерно одинакова. Связано это с тем, что структура белковых молекул, а следовательно, и активность ферментов сильно зависят от концентрации ионов водорода в среде. Не все белки, присутствующие в живых организмах, являются ферментами. Так, иную функцию выполняют структурные белки, многие специфические белки крови, белковые гормоны и т.д.
Коферменты и субстраты. Многие ферменты с большой молекулярной массой проявляют каталитическую активность только в присутствии специфических низкомолекулярных веществ, называемых коферментами (или кофакторами). Роль коферментов играют большинство витаминов и многие минеральные вещества; именно поэтому они должны поступать в организм с пищей. Витамины РР (никотиновая кислота, или ниацин) и рибофлавин, например, входят в состав коферментов, необходимых для функционирования дегидрогеназ. Цинк - кофермент карбоангидразы, фермента, катализирующего высвобождение из крови диоксида углерода, который удаляется из организма вместе с выдыхаемым воздухом. Железо и медь служат компонентами дыхательного фермента цитохромоксидазы. Вещество, подвергающееся превращению в присутствии фермента, называют субстратом. Субстрат присоединяется к ферменту, который ускоряет разрыв одних химических связей в его молекуле и создание других; образующийся в результате продукт отсоединяется от фермента. Этот процесс представляют следующим образом:

Продукт тоже можно считать субстратом, поскольку все ферментативные реакции в той или иной степени обратимы. Правда, обычно равновесие сдвинуто в сторону образования продукта, и обратную реакцию бывает трудно зафиксировать.
Механизм действия ферментов. Скорость ферментативной реакции зависит от концентрации субстрата [[S]] и количества присутствующего фермента. Эти величины определяют, сколько молекул фермента соединится с субстратом, и именно от содержания фермент-субстратного комплекса зависит скорость реакции, катализируемой данным ферментом. В большинстве ситуаций, представляющих интерес для биохимиков, концентрация фермента очень мала, а субстрат присутствует в избытке. Кроме того, биохимики исследуют процессы, достигшие стационарного состояния, при котором образование фермент-субстратного комплекса уравновешивается его превращением в продукт. В этих условиях зависимость скорости (v) ферментативного превращения субстрата от его концентрации [[S]] описывается уравнением Михаэлиса - Ментен:


где KM - константа Михаэлиса, характеризующая активность фермента, V - максимальная скорость реакции при данной суммарной концентрации фермента. Из этого уравнения следует, что при малых [[S]] скорость реакции возрастает пропорционально концентрации субстрата. Однако при достаточно большом увеличении последней эта пропорциональность исчезает: скорость реакции перестает зависеть от [[S]] - наступает насыщение, когда все молекулы фермента оказываются занятыми субстратом. Выяснение механизмов действия ферментов во всех деталях - дело будущего, однако некоторые важные их особенности уже установлены. Каждый фермент имеет один или несколько активных центров, с которыми и связывается субстрат. Эти центры высокоспецифичны, т.е. "узнают" только "свой" субстрат или близкородственные соединения. Активный центр формируют особые химические группы в молекуле фермента, ориентированные друг относительно друга определенным образом. Происходящая так легко потеря ферментативной активности связана именно с изменением взаимной ориентации этих групп. Молекула субстрата, связанного с ферментом, претерпевает изменения, в результате которых разрываются одни и образуются другие химические связи. Чтобы этот процесс произошел, необходима энергия; роль фермента состоит в снижении энергетического барьера, который нужно преодолеть субстрату для превращения в продукт. Как именно обеспечивается такое снижение - до конца не установлено.
Ферментативные реакции и энергия. Высвобождение энергии при метаболизме питательных веществ, например при окислении шестиуглеродного сахара глюкозы с образованием диоксида углерода и воды, происходит в результате последовательных согласованных ферментативных реакций. В животных клетках в превращениях глюкозы в пировиноградную кислоту (пируват) или молочную кислоту (лактат) участвуют 10 разных ферментов. Этот процесс называется гликолизом. Первая реакция - фосфорилирование глюкозы - требует участия АТФ. На превращение каждой молекулы глюкозы в две молекулы пировиноградной кислоты расходуются две молекулы АТФ, но при этом на промежуточных этапах из аденозиндифосфата (АДФ) образуются 4 молекулы АТФ, так что весь процесс в целом дает 2 молекулы АТФ. Далее пировиноградная кислота окисляется до диоксида углерода и воды при участии ферментов, ассоциированных с митохондриями. Эти превращения образуют цикл, называемый циклом трикарбоновых кислот, или циклом лимонной кислоты.
См. также МЕТАБОЛИЗМ . Окисление одного вещества всегда сопряжено с восстановлением другого: первое отдает атом водорода, а второе его присоединяет. Катализируют эти процессы дегидрогеназы, обеспечивающие перенос атомов водорода от субстратов к коферментам. В цикле трикарбоновых кислот одни специфические дегидрогеназы окисляют субстраты с образованием восстановленной формы кофермента (никотинамиддинуклеотида, обозначаемого НАД), а другие окисляют восстановленный кофермент (НАДЧН), восстанавливая другие дыхательные ферменты, в том числе цитохромы (железосодержащие гемопротеины), в которых атом железа попеременно то окисляется, то восстанавливается. В конечном итоге восстановленная форма цитохромоксидазы, одного из ключевых железосодержащих ферментов, окисляется кислородом, попадающим в наш организм с вдыхаемым воздухом. Когда происходит горение сахара (окисление кислородом воздуха), входящие в его состав атомы углерода непосредственно взаимодействуют с кислородом, образуя диоксид углерода. В отличие от горения, при окислении сахара в организме кислород окисляет собственно железо цитохромоксидазы, но в конечном итоге его окислительный потенциал используется для полного окисления сахаров в ходе многоступенчатого процесса, опосредуемого ферментами. На отдельных этапах окисления энергия, заключенная в питательных веществах, высвобождается в основном маленькими порциями и может запасаться в фосфатных связях АТФ. В этом принимают участие замечательные ферменты, которые сопрягают окислительные реакции (дающие энергию) с реакциями образования АТФ (запасающими энергию). Этот процесс сопряжения известен как окислительное фосфорилирование. Не будь сопряженных ферментативных реакций, жизнь в известных нам формах была бы невозможна. Ферменты выполняют и множество других функций. Они катализируют разнообразные реакции синтеза, включая образование тканевых белков, жиров и углеводов. Для синтеза всего огромного множества химических соединений, обнаруженных в сложных организмах, используются целые ферментные системы. Для этого нужна энергия, и во всех случаях ее источником служат фосфорилированные соединения, такие, как АТФ.





Ферменты и пищеварение. Ферменты - необходимые участники процесса пищеварения. Только низкомолекулярные соединения могут проходить через стенку кишечника и попадать в кровоток, поэтому компоненты пищи должны быть предварительно расщеплены до небольших молекул. Это происходит в ходе ферментативного гидролиза (расщепления) белков до аминокислот, крахмала до сахаров, жиров до жирных кислот и глицерина. Гидролиз белков катализирует фермент пепсин, содержащийся в желудке. Ряд высокоэффективных пищеварительных ферментов секретирует в кишечник поджелудочная железа. Это трипсин и химотрипсин, гидролизующие белки; липаза, расщепляющая жиры; амилаза, катализирующая расщепление крахмала. Пепсин, трипсин и химотрипсин секретируются в неактивной форме, в виде т.н. зимогенов (проферментов), и переходят в активное состояние только в желудке и кишечнике. Это объясняет, почему указанные ферменты не разрушают клетки поджелудочной железы и желудка. Стенки желудка и кишечника защищает от пищеварительных ферментов и слой слизи. Некоторые важные пищеварительные ферменты секретируются клетками тонкого кишечника. Большая часть энергии, запасенной в растительной пище, такой, как трава или сено, сосредоточена в целлюлозе, которую расщепляет фермент целлюлаза. В организме травоядных животных этот фермент не синтезируется, и жвачные, например крупный рогатый скот и овцы, могут питаться содержащей целлюлозу пищей только потому, что целлюлазу вырабатывают микроорганизмы, заселяющие первый отдел желудка - рубец. С помощью микроорганизмов происходит переваривание пищи и у термитов. Ферменты находят применение в пищевой, фармацевтической, химической и текстильной промышленности. В качестве примера можно привести растительный фермент, получаемый из папайи и используемый для размягчения мяса. Ферменты добавляют также в стиральные порошки.
Ферменты в медицине и сельском хозяйстве. Осознание ключевой роли ферментов во всех клеточных процессах привело к широкому их применению в медицине и сельском хозяйстве. Нормальное функционирование любого растительного и животного организма зависит от эффективной работы ферментов. В основе действия многих токсичных веществ (ядов) лежит их способность ингибировать ферменты; таким же эффектом обладает и ряд лекарственных препаратов. Нередко действие лекарственного препарата или токсичного вещества можно проследить по его избирательному влиянию на работу определенного фермента в организме в целом или в той или иной ткани. Например, мощные фосфорорганические инсектициды и нервно-паралитические газы, разработанные в военных целях, оказывают свой губительный эффект, блокируя работу ферментов - в первую очередь холинэстеразы, играющей важную роль в передаче нервного импульса. Чтобы лучше понять механизм действия лекарственных препаратов на ферментные системы, полезно рассмотреть, как работают некоторые ингибиторы ферментов. Многие ингибиторы связываются с активным центром фермента - тем самым, с которым взаимодействует субстрат. У таких ингибиторов наиболее важные структурные особенности близки к структурным особенностям субстрата, и если в реакционной среде присутствуют и субстрат и ингибитор, между ними наблюдается конкуренция за связывание с ферментом; при этом чем больше концентрация субстрата, тем успешнее он конкурирует с ингибитором. Ингибиторы другого типа индуцируют в молекуле фермента конформационные изменения, в которые вовлекаются важные в функциональном отношении химические группы. Изучение механизма действия ингибиторов помогает химикам создавать новые лекарственные препараты.

8.7.1. В клеточном содержимом ферменты распределены не хаотически, а строго упорядоченно. При помощи внутриклеточных мембран клетка разделена на отсеки или компартменты (рисунок 8.18). В каждом из них осуществляются строго определенные биохимические процессы и сосредоточены соответствующие ферменты или полиферментные комплексы. Вот несколько характерных примеров.

Рисунок 8.18. Внутриклеточное распределение ферментов различных метаболических путей.

В лизосомах сосредоточены преимущественно разнообразные гидролитические ферменты. Здесь протекают процессы расщепления сложных органических соединений на их структурные компоненты.

В митохондриях находятся сложные системы окислительно-восстановительных ферментов.

Ферменты активирования аминокислот распределены в гиалоплазме, но они же есть и в ядре. В гиалоплазме присутствуют многочисленные метаболоны гликолиза, структурно объединенные с таковыми пентозофосфатного цикла, что обеспечивает взаимосвязь дихотомического и апотомического путей распада углеводов.

В то же время ферменты, ускоряющие перенос аминокислотных остатков на растущий конец полипептидной цепи и катализирующие некоторые другие реакции в процессе биосинтеза белка, сосредоточены в рибосомальном аппарате клетки.

В клеточном ядре локализованы в основном нуклеотидилтрансферазы, ускоряющие реакцию переноса нуклеотидных остатков при новообразовании нуклеиновых кислот.

8.7.2. Распределение ферментов по субклеточным органеллам изучают после предварительного фракционирования клеточных гомогенатов путем высокоскоростного центрифугирования, определяя содержание ферментов в каждой фракции.

Локализацию данного фермента в ткани или клетке часто удается установить in situ гистохимическими методами («гистоэнзимология»). Для этого тонкие (от 2 до 10 мкм) срезы замороженной ткани обрабатывают раствором субстрата, к которому специфичен данный фермент. В тех местах, где находится фермент, образуется продукт катализируемой этим ферментом реакции. Если продукт окрашен и нерастворим, он остается на месте образования и позволяет локализовать фермент. Гистоэнзимология дает наглядную и в известной мере физиологичную картину распределения ферментов.

Ферментные системы ферментов, сосредоточенные во внутриклеточных структурах, тонко координированы друг с другом. Взаимосвязь катализируемых ими реакций обеспечивает жизнедеятельность клеток, органов, тканей и организма в целом.

При исследовании активности различных ферментов в тканях здорового организма можно получить картину их распространения. Оказывается, что некоторые ферменты широко распространены во многих тканях, но в разных концентрациях, а другие очень активны в экстрактах, полученных из одной или нескольких тканей, и практически отсутствуют в остальных тканях организма.

Рисунок 8.19. Относительная активность некоторых ферментов в тканях человека, выраженная в процентах от активности в ткани с максимальной концентрацией данного фермента (Мосс, Баттерворт, 1978).

8.7.3. Понятие об энзимопатиях. В 1908 году английский врач Арчибальд Гаррод высказал предположение, что причиной ряда заболеваний может являться отсутствие какого-либо из ключевых ферментов, участвующих в обмене веществ. Он ввёл понятие "inborn errors of metabolism" (врождённый дефект обмена веществ). В дальнейшем эта теория была подтверждена новыми данными, полученными в области молекулярной биологии и патологической биохимии.

Информация о последовательности аминокислот в полипептидной цепи белка записана в соответствующем участке молекулы ДНК в виде последовательности тринуклеотидных фрагментов - триплетов или кодонов. Каждый триплет кодирует определённую аминокислоту. Такое соответствие называется генетическим кодом. Причём некоторые аминокислоты могут быть закодированы при помощи нескольких кодонов. Существуют также специальные кодоны, являющиеся сигналами для начала синтеза полипептидной цепи и его прекращения. К настоящему времени генетический код полностью расшифрован. Он является универсальным для всех видов живых организмов.

Реализация информации, заложенной в молекуле ДНК, включает несколько этапов. Сначала в клеточном ядре в процессе транскрипции синтезируется матричная РНК (мРНК), поступающая в цитоплазму. В свою очередь, мРНК служит матрицей для трансляции - синтеза полипептидных цепей на рибосомах. Таким образом, природа молекулярных болезней определяется нарушением структуры и функции нуклеиновых кислот и контролируемых ими белков.

8.7.4. Поскольку информация о структуре всех белков клетки содержится в последовательности нуклеотидов ДНК, а каждая аминокислота определяется триплетом нуклеотидов, изменение первичной структуры ДНК может в конечном счёте оказать глубокое влияние на синтезируемый белок. Подобные изменения происходят за счёт ошибок репликации ДНК, когда одно азотистое основание заменяется другим, либо в результате действия радиации или при химической модификации. Все возникшие таким образом наследуемые дефекты называются мутациями . Они могут приводить к неправильному считыванию кода и делеции (выпадению) ключевой аминокислоты, замене одной аминокислоты другой, преждевременной остановке белкового синтеза или добавлению аминокислотных последовательностей. Учитывая зависимость пространственной упаковки белка от линейной последовательности в нём аминокислот, можно полагать, что подобные дефекты способны изменить структуру белка, а значит, и его функцию. Тем не менее, многие мутации обнаруживаются только в лабораторных условиях и не оказывают вредного воздействия на функции белка. Таким образом, ключевым моментом является локализация изменений в первичной структуре. Если положение замененной аминокислоты окажется критическим для формирования третичной структуры и образования каталитического центра фермента, то мутация является серьёзной и может проявиться как заболевание.

Последствия недостаточности одного фермента в цепи реакций обмена веществ могут проявляться по-разному. Предположим, что превращение соединения A в соединение B катализирует фермент Е и что соединение C встречается на альтернативном пути превращений (рисунок 8.20):

Рисунок 8.20. Схема альтернативных путей биохимических превращений.

Последствиями недостаточности фермента могут быть следующие явления:

  1. недостаточность продукта ферментативной реакции (B ). В качестве примера можно указать на снижение содержания глюкозы в крови при некоторых формах гликогенозов;
  2. накопление вещества (A ), превращение которого катализирует фермент (например, гомогентизиновая кислота при алкаптонурии). При многих лизосомных болезнях накопления, вещества, в норме подвергающиеся гидролизу в лизосомах, накапливаются в них в связи с недостаточностью одного из ферментов;
  3. отклонение на альтернативный путь с образованием некоторых биологически активных соединений (C ). К этой группе явлений относится экскреция с мочой фенилпировиноградной и фенилмолочной кислот, образующихся в организме больных фенилкетонурией в результате активации вспомогательных путей распада фенилаланина.

Если метаболическое превращение в целом регулируется по принципу обратной связи конечным продуктом, то эффекты двух последних типов аномалий будут более значительными. Так, например, при порфириях (врождённых нарушениях синтеза гема) устраняется подавляющего эффекта гема на начальные реакции синтеза, что приводит к образованию избыточных количеств промежуточных продуктов метаболического пути, которые обладают токсическим действием на клетки кожи и нервной системы.

Факторы внешней среды могут усиливать или даже полностью определять клинические проявления некоторых врождённых нарушений обмена веществ. Например, у многих пациентов с недостаточностью глюкозо-6-фосфатдегидрогеназы заболевание начинается только после приёма таких лекарственных средств, как примахин. В отсутствие контактов с лекарственными средствами такие люди производят впечатление здоровых.

8.7.5. О недостаточности фермента обычно судят косвенно по повышению концентрации исходного вещества, которое в норме подвергается превращениям под действием данного фермента (например, фенилаланин при фенилкетонурии). Прямое определение активности таких ферментов проводят только в специализированных центрах, но по возможности диагноз следует подтверждать этим методом. Пренатальная (дородовая) диагностика некоторых врождённых нарушений метаболизма возможна путём иследования клеток амниотической жидкости, полученных на ранних стадиях беременности и культивируемых in vitro.

Некоторые врождённые нарушения метаболизма поддаются лечению путём доставки в организм недостающего метаболита или путём ограничения поступления в желудочно-кишечный тракт предшественников нарушенных процессов обмена веществ. Иногда могут быть удалены накапливающиеся продукты (например, железо при гемохроматозе).

Организм каждого живого существа состоит из большого количества клеток. В их состав входят структурные тела, между которыми происходят различные биохимические реакции. Каждую химическую реакцию контролируют важные компоненты. Ферменты: их функции, классификация и роль в организме.

Их в организме огромное количество и каждый занят своим делом: одни из них разрывают связи в органических соединениях, а другие, напротив их образуют, ускоряя синтез новых веществ.

Некоторые могут оказывать воздействие на молекулы, изменяя их структуру, а другие — выполняют защитную роль, разрушая чужеродные структуры, попавшие внутрь организма. Какие-то, просто исполняют транспортные функции, но не менее важные, чем остальные для организма.

Роль ферментов в организме человека

Что это такое. Ферменты в организме представлены белковыми молекулами или молекулами РНК, ускоряющими ход любой химической реакции. Его основными функциями являются расщепление, а также образование совершенно новых и жизненно необходимых веществ. Их еще называют — энзимы, слово идет от латинского «fermentum», что означает закваска и насчитывается их свыше 4000 тысяч или биокатализаторами.

В природе нет более сильных катализаторов, имеющих способность сильно ускорить процесс жизнедеятельности. Благодаря им, реакции в клетках протекают быстрее и активнее в миллиарды раз.

Любопытно, что… Всего лишь одна микроскопическая молекула фермента каталазы, чудодейственным образом, лишь за одну секунду, разрушает связи в 10 тыс. молекул перекиси водорода, которые образуются в процессе окислительных реакций организма, и превращает их в воду и кислород.

Они могут контролировать все необходимые процессы расщепления, дыхания, кровообращения, синтеза и обмена веществ, размножения. Без их участия невозможно мышечное сокращение и проведение нервных импульсов. Даже отсутствие одного из тысячной армии энзимов, может привести к серьезным последствиям.


Мне понравилось одно сравнение, которое я встретила на одном из форумов обсуждаемых этот вопрос. Поскольку, без fermentum не обходится ни одна химическая реакция в организме, ни один процесс, связанный с обменом веществ или генетической информацией. Один из собеседников сравнивает их с рабочими, без которых никак не обойтись, если бы вы собирались строить свой дом.

Любой элемент живого организма имеет собственный набор весьма непростых и очень интересных биокатализаторов. В момент полного исключения, либо значительного снижения какого-либо из них, в человеческом организме могут происходить сильные изменения, способные привести к той или иной патологии.

Где они находятся

Основная их часть связана с определенными клеточными органоидами, где и проявляют свои функции. В ядрах клеток находятся энзимы, ответственные за синтез ДНК и построение РНК (по транскрипции ДНК), в митохондриях находятся биокатализаторы, ответственные за пополнение энергии, а те которые способствуют разрыву связей между аминокислотами, образующими белок или нуклеиновыми кислотами «живут» в лизосомах.

Какие условия благоприятны для биокатализаторов

В основном реакции с их участием проходят в слабощелочной, слабокислой или нейтральной среде. Но все же, для каждой молекулы есть различия в значениях pH среды.

Температурные показатели у всех теплокровных и у человека, наиболее благоприятны при значениях от 37 — до 40 градусов.

А вот у растений, даже в период зимнего отдыха, при температуре ниже 0 градусов, активность биокатализаторов не прекращается.

Но температура выше 70 градусов для них губительна, поскольку по своему строению они являются белковыми молекулами и при таком показателе происходит их денатурация (разрушение).

Классификация

Известны 2 ферментные группы с учетом формы их строения:

  1. Простые, имеющие белковую природу. Они самостоятельно вырабатываются организмом.
  2. Сложные, имеющие небелковое основание и белковые компоненты. К небелковым молекулам относятся вещества, не имеющие способности синтезироваться в живом организме и поэтому попадают в него вместе с потребляемыми продуктами. Их принято называть коферментами. К таким веществам относятся: все витамины группы В, С и некоторое число микроэлементов.


Подразделение по функциональности. Например, пищеварительные, отвечающие за все процессы расщепления питательных веществ. Такие молекулы в большей части располагаются в слюне, а также во всех слизистых оболочках, желудка и поджелудочной.

По типу катализируемых реакций , в медицине выделяются:

  • амилазу, которая способствует расщеплению сложного сахара до простого (фермент в последствии может принимать активное участие во всех процессах жизнедеятельности);
  • липазу, принимающую активное участие в гидролизе жирных кислот и способствует разбитию жиров до таких компонентов, которые в последствии будут легко усваиваться организмом;
  • протеазу, способствующую расщеплению белков до состояния аминокислот.

Имеются и метаболические . Они принимают достаточно активное участие в окислительно-восстановительных реакциях, а также в синтезе белка.

Защитные ферменты , принимающие активное участие в защите всего организма. Они способны предотвратить возникновение вредоносных бактерий, а также вирусов, а в случае их попадания, в состоянии оказать достойное противостояние.

Самым важным ферментом этой группы является лизоцим, способствующий полному расщеплению оболочки болезнетворной бактерии, после чего происходит активация большого количества иммунных реакций, способных, в свою очередь, защитить организм от возможных процессов воспаления.

По выполняемым функциям :

Функции у всех разные. Каждый из них выполняет (катализирует) только один биохимический процесс. Согласно типам катализируемых реакций, ферменты подразделяются на несколько классов:

  1. Оксидоредуктазы. Эта группа принимает активное участие во всех окислительно-восстановительных реакциях. В процессе реакций ферменты помогают переносить электроны и водород и катализируют окислительные процессы. К ним относятся: дегидрогеназа, пероксидаза, оксидаза),
  2. Трансферазы. Они несут огромную ответственность за перенос всех атомных групп, карбоксильных, амино-, сульфо-формильных и фосфорильных, а также способствуют расщеплению и синтезу белка.
  3. Гидролазы. Способствует расщеплению ненужных связей и помогает водным молекулам встраиваться в общий состав организма. Известные представители этой группы: уреаза, фосфотаза, астераза, амилаза, липаза, гликозидаза),
  4. Изомеразы. Являются некими преобразователями всевозможных веществ в организме.
  5. Лиазы. Принимают активное участие в тех реакциях, которые способствуют образованию метаболических веществ и воды, (путем отщепления СО2, Н2О, NН3) от исходного вещества. К ним относятся: лиаза, декаминаза, декарбоксилаза, дегидратаза,
  6. Лигазы. Способствуют превращению сложных веществ в простые. Принимают активное участие в синтезе белков, углеводов, жирных кислот.

Опасен ли дефицит биокатализаторов для здоровья

Недостаточность энзимов по своему происхождению подразделяется на 2 типа – это врожденная и приобретенная. В первом случае такой недуг способен активно развиваться на генном уровне, либо на фоне нарушений или недугов железы поджелудочной. При этом, может быть оказано любое лечение, все зависит оттого, что именно спровоцировало недуг.

Врожденный недостаток энзимов, равно как их переизбыток приводит к развитию заболеваний и даже смерти, а заболеваний несколько и их объединяют в группу под названием энзимопатии.


  • Когда нарушается синтез катализатора, ответственного за преобразование галактозы в глюкозу, возникает наследственное заболевание у детей — галактоземия.
  • При фенилкетонурии — нарушается психическая деятельность из-за неспособности организма синтезировать энзим, который участвует в превращении фенилаланина в тирозин.

Поэтому, по активности этих веществ в моче, крови, семенной жидкости или спинно-мозговой, можно установить тот или иной диагноз. Для этого сдаются анализы на ферменты, которые позволяют выявить заболевания на ранней стадии их развития, например, панкреатит и нефрит, вирусный гепатит и инфаркт миокарда.

Причины нехватки энзимов у детей

Что касается приобретенной степени развития заболевания у детей, то недуг возникает в результате некоторых перенесенных патологий:

  • те или иные заболевания поджелудочной;
  • всевозможные инфекционные болезни;
  • любые заболевания с тяжелым течением;
  • нарушение кишечной флоры;
  • интоксикации при чрезмерном использовании тех или иных медикаментозных препаратов;
  • пребывания в достаточно неблагоприятной экологической обстановке;
  • при истощении организма, которое было вызвано недостатком белка и полезных витаминов.

Основными причинами наличия недостаточности у детей до года являются инфицирование всего организма и плохое питание. Конечно же, спровоцировать подобного рода нарушения могут и иные факторы.

Как отдельный недуг, нехватка биокатализаторов отрицательно воздействует на все процессы пищеварения. Любое проявление недуга сказывается на самочувствии ребенка и характере его стула.

Симптоматикой является:

  • наличие жидкого кала;
  • значительное понижение аппетита малыша;
  • чувство тошноты и даже рвота;
  • ребенок начинает резко и беспричинно худеть;
  • физическое развитие притупляется;
  • может появиться вздутие живота, а также некоторые болезненные ощущения, которые могут быть вызваны процессами гниения пищи.

То, что у малыша начинает развиваться заболевание, с легкостью можно распознать по внешнему виду ребенка. Он становится очень вялым, отсутствует аппетит, а процесс опорожнения происходит более 8 раз в день. Такая симптоматика очень напоминает инфицирование кишечника, но специалист-гастроэнтеролог способен распознать недуг по результатам анализа кала.

Недостаточное количество энзимов в организме оказывает негативное влияние на все существующие характеристики стула. В таком случае, симптоматика ярко выражена пенистым калом, который имеет достаточно неприятный кисловатый запах и выделяется в сильно жидкостном виде.


Такое изменение дефекации говорит о том, что в организме преобладает большое количество углеводов. Дефицит биокатализаторов способен проявляться различными проблемами, связанными с пищеварением. Постоянно жидкий стул, вялое состояние и необъяснимое вздутие живота являются основными симптомами наличия патологии.

Меры воздействия

Когда у ребенка обнаруживают такой недуг, специалисты часто назначают соблюдение специальной диеты. В это время из рациона питания малыша необходимо полностью исключить глютеносодержащие продукты. Врачи рекомендуют употребление картофельного пюре, рисовой крупы, а также свежих овощей и фруктов.
Если заболевание носит у ребенка наследственный характер, то в таком случае ему назначается пожизненная диета. Кроме того, нужно будет постоянно употреблять препараты, помогающие нормальной жизнедеятельности.

Где используются ферменты человеком

Биокатализаторы, как активные белковые молекулы, способствующие превращению одних веществ в другие, широко используются человеком, благодаря своим способностям сохранять свойства и функции вне организма.

  • Протеолитический фермент папайя, который выделяют из сока одноименного плода, используют для производства пива и размягчения мяса;
  • пепсином пользуются для производства каш быстрого приготовления;
  • трипсином — для производства продуктов питания детского;
  • реннин, полученный из желудка телят, используют при варке сыров.

Каталазу применяют для расщепления в резиновой и пищевой промышленности.

А пектидазу и целлюлозу, расщепляющие полисахаридные цепочки, используют для осветления фруктовых соков.

Их широко используют в фармакологии для производства лекарственных препаратов.

  • Чем полезна и как приготовить дома ферментированную пищу, вы узнаете из статьи:

Таким образом, ферменты или биокатализаторы, являются активными белками, без которых жизнь человека невозможна. Понимая их функции не стоит пренебрегать рекомендациями врачей. Роль ферментов направлена на улучшение работы клеточных структур, что ведет к слаженной деятельности всего организма.

Здоровья вам, уважаемые читатели!

☀ ☀ ☀

В статьях блога используются картинки, из открытых источников Интернета. Если вы, вдруг, увидите свое авторское фото, сообщите об этом редактору блога через форму . Фотография будет удалена, либо будет поставлена ссылка на ваш ресурс. Спасибо за понимание!

← Вернуться

×
Вступай в сообщество «passport13.com»!
ВКонтакте:
Я уже подписан на сообщество «passport13.com»