Основное понятие теории вероятности. Законы теории вероятности

Подписаться
Вступай в сообщество «passport13.com»!
ВКонтакте:

для студентов 2 курса всех специальностей

Кафедра Высшей математики

Вводная часть

Уважаемые студенты!

Вашему вниманию предлагается обзорная (установочная) лекция профессора Н.Ш.Кремера по дисциплине «Теория вероятностей и математическая статистика» для студентов второго курса ВЗФЭИ.

В лекции обсуждаются задачи изучения теории вероятностей и математической статистики в экономическом вузе и ее место в системе подготовки современного экономиста, рассматривается организация самостоятельной работы студентов с использованием компьютерной обучающей системы (КОПР) и традиционных учебников, даются обзор основных положений данного курса, а также методические рекомендации по ее изучению.

Среди математических дисциплин, изучаемых в экономическом вузе, теория вероятностей и математическая статистика занимает особое положение. Во-первых, она является теоретической базой статистических дисциплин. Во-вторых, методы теории вероятностей и математической статистики непосредственно используются при изучении массовых совокупностей наблюдаемых явлений, обработке результатов наблюдений и выявлении закономерностей случайных явлений. Наконец, теория вероятностей и математическая статистика имеет важное методологическое значение в познавательном процессе , при выявлении общей закономерности исследуемых процессов, служит логической основой индуктивно-дедуктивного умозаключения.

Каждый студент второго курса должен иметь следующий набор (кейс) по дисциплине «Теория вероятностей и математическая статистика»:

1. Обзорную установочную лекцию по данной дисциплине.

2. Учебник Н.Ш. Кремера «Теория вероятностей и математическая статистика» – М.: ЮНИТИ – ДАНА, 2007 (в дальнейшем будем называть просто «учебник»).

3. Учебно-методическое пособие «Теория вероятностей и математическая статистика»/ под ред. Н.Ш. Кремера. – М.: Вузовский учебник, 2005 (в дальнейшем «пособие»).

4. Компьютерную обучающую программу КОПР по дисциплине (в дальнейшем – «компьютерная программа»).

На сайте института на странице «Корпоративные ресурсы» размещены интернет-версии компьютерной программы КОПР2, обзорной установочной лекции и электронной версии пособия. Кроме того, компьютерная программа и пособие представлены на CD - ROM ах для студентов второго курса. Поэтому в «бумажном виде» студенту необходимо иметь лишь учебник.

Поясним назначение каждого из учебно-методических материалов, входящий в указанный набор (кейс).

В учебнике изложены основные положения учебного материала дисциплины, иллюстрируемые достаточно большим числом решенных задач.

В пособии даны методические рекомендации по самостоятельному изучению учебного материала, выделены наиболее важные понятия курса и типовые задачи, даны контрольные вопросы для самопроверки по данной дисциплине, приведены варианты домашних контрольных работ, которые должен выполнить студент, а также методические указания по их выполнению.

Компьютерная программа призвана оказать Вам максимальную помощь в усвоении курса в режиме диалога программы со студентом с тем, чтобы в наибольшей степени восполнить отсутствие у Вас аудиторных занятий, соответствующего контакта с преподавателем.

Для студента, обучающегося по системе дистанционного обучения, первостепенное, определяющее значение имеет организация самостоятельной работы.

Приступая к изучению данной дисциплины, прочтитедо конца настоящую обзорную (установочную) лекцию. Это позволит Вам получить в целом представление об основных понятиях и методах, используемых в курсе «Теория вероятностей и математическая статистика», и требованиях, предъявляемых к уровню подготовки студентов ВЗФЭИ.

Перед изучением каждой темы ознакомьтесь с методическими рекомендациями к изучению данной темы по пособию. Здесь Вы найдете перечень учебных вопросов данной темы, которые Вам предстоит изучить; выясните, какие понятия, определения, теоремы, задачи являются наиболее важными, которые надо изучить и освоить в первую очередь.

Затем перейдите к изучению основного учебного материала по учебнику в соответствии с полученными методическими рекомендациями. Советуем конспектировать в отдельной тетради основные определения, формулировки теорем, схемы их доказательств, формулы и решения типовых задач. Формулы целесообразно выписывать в специальные таблицы для каждой части курса: теория вероятностей и математическая статистика. Регулярное пользование конспектом, в частности, таблицами формул, способствует их запоминанию.

Лишь после проработки основного учебного материала каждой темы по учебнику можно перейти к изучению этой темы с помощью компьютерной обучающей программы (КОПР2).

Обратите внимание на структуру построения компьютерной программы по каждой теме. После названия темы приводится перечень основных учебных вопросов темы по учебнику с указанием номеров параграфов и страниц, которые необходимо изучить. (Напомним, что перечень этих вопросов по каждой теме приведен также и в пособии).

Затем в краткой форме дается справочный материал по данной теме (или по отдельным параграфам этой темы) – основные определения, теоремы, свойства и признаки, формулы и т.п. В процессе изучения темы Вы также можете вызвать на экран те фрагменты справочного материала (по данной или предыдущим темам), которые необходимы в данный момент.

Затем Вам предлагается учебный материал и обязательно типовые задачи (примеры), решение которых рассматривается в режиме диалога программы со студентом. Функции ряда примеров ограничиваются выводом на экран по запросу обучаемого этапов правильного решения. Вместе с тем в процессе рассмотрения большинства примеров Вам будут задаваться вопросы того или иного характера. В качестве ответов на одни вопросы следует вводить с клавиатуры числовой ответ, на другие – выбирать правильный ответ (или ответы) из нескольких предложенных.

В зависимости от введенного Вами ответа программа подтверждает его правильность или предлагает, ознакомившись с подсказкой, содержащей необходимые теоретические положения, вновь попытаться дать правильные решение и ответ. Во многих заданиях установлено ограничение на количество попыток решения (при превышении этого ограничения на экран обязательно выводится правильный ход решения). Имеются и такие примеры, в которых количество информации, содержащееся в подсказке, возрастает по мере повторения неудачных попыток ответа.

После ознакомления с теоретическими положениями учебного материала и примерами, которые снабжены подробным разбором решения, Вы должны выполнить упражнения для самоконтроля, чтобы закрепить навыки решения типовых задач по каждой теме. Задания для самоконтроля также содержат элементы диалога со студентом. По завершению решения Вы можете ознакомиться с правильным ответом и сравнить его с тем, который Вы дали.

В завершение работы по каждой теме следует выполнить контрольные задания. Правильные ответы на них Вам не выводятся, а Ваши ответы записываются на жесткий диск компьютера для последующего ознакомления с ними преподавателя-консультанта (тьютора).

После изучения тем 1–7 Вы должны выполнить домашнюю контрольную работу № 3, а после изучения тем 8–11 – домашнюю контрольную работу № 4. Варианты указанных контрольных работ приведены в пособии (его электронной версии). Номер выполняемого варианта должен совпадать с последней цифрой номера Вашего личного дела (зачетной книжки, студенческого билета). По каждой контрольной работе Вы должны проходить собеседование, на котором необходимо показать умение решать задачи и знание основных понятий (определений, теорем (без доказательства), формул и т.п.) по теме контрольной работы. Завершается изучение дисциплины курсовым экзаменом.

Теория вероятностей – математическая наука, изучающая закономерности случайных явлений.

Предлагаемая для изучения дисциплина состоит из двух разделов «Теория вероятностей» и «Математическая статистика».

Математика включает целое множество областей, одной из которых, наряду с алгеброй и геометрией, является теория вероятности. Существуют термины, являющиеся общими для всех этих направлений, но, помимо них, есть и специфические, свойственные только одной конкретной «нише» слова, формулы, теоремы.

Словосочетание «теория вероятности» вызывает у неподготовленного студента панику. Действительно, воображение рисует картины, где фигурируют страшные объемные формулы, а решение одной задачи занимает целую тетрадь. Однако на практике всё вовсе не так ужасно: достаточно один раз понять смысл некоторых терминов и вникнуть в суть несколько своеобразной логики рассуждений, чтобы перестать бояться заданий раз и навсегда. В связи с этим мы рассмотрим основные понятия теории вероятностей и математической статистики - молодой, но крайне интересной области знаний.

Для чего учить понятия

Функция языка - передавать информацию от одного человека к другому так, чтобы он её понял, осознал и смог использовать. Каждое математическое понятие можно объяснить простыми словами, но в этом случае акт обмена данными занимал бы значительно больше времени. Представьте, что вместо слова «гипотенуза» вам всегда бы пришлось говорить «самая длинная сторона прямоугольного треугольника» - это крайне неудобно и долго.

Потому люди и придумывают новые термины для тех или иных явлений, процессов. Основные понятия теории вероятностей - событие, вероятность события и т. д. - появились точно так же. А значит, чтобы использовать формулы, решать задачи и применять навыки в жизни, необходимо не просто запомнить новые слова, но и понять, что означает каждое из них. Чем более глубоко вы осознаете их, вникаете в смысл, тем шире становятся рамки ваших возможностей, и тем полнее вы воспринимаете окружающий мир.

В чем смысл предмета

Познакомимся с основными понятиями теории вероятностей. Классическое определение вероятности звучит следующим образом: это отношение устраивающих исследователя исходов к общему числу возможных. Приведем простой пример: когда человек бросает кубик, тот может выпасть любой из шести сторон кверху. Таким образом, общее число исходов - шесть. Вероятность же того, что выпадет случайно выбранная сторона - 1/6.

Умение предсказывать появление того или иного результата является крайне важным для самых разных специалистов. Сколько бракованных деталей ожидается в партии? От этого зависит, сколько нужно произвести. Какова вероятность, что лекарство поможет побороть болезнь? Такая информация и вовсе является жизненно важной. Но не будем тратить время на дополнительные примеры и приступим к изучению новой для нас области.

Первое знакомство

Рассмотрим основные понятия теории вероятности и их использование. В праве, естественных науках, экономике представленные ниже формулы и термины используются повсеместно, поскольку имеют непосредственное отношение в статистике и погрешности измерений. Более подробное изучение этого вопроса откроет вам и новые формулы, полезные для более точных и сложных вычислений, однако начнем с простого.

Одним из самых базовых и основных понятий теории вероятностей и математической статистики является случайное событие. Объясним понятными словами: из всех возможных исходов эксперимента в результате наблюдается лишь один. Даже если вероятность наступления этого события значительно выше, чем другого, оно будет случайным, так как теоретически итог мог быть и иным.

Если мы провели серию экспериментов и получили некоторое количество исходов, то вероятность каждого из них рассчитывается по формуле: P(A) = m/n. Здесь m - это то, сколько раз в серии испытаний мы наблюдали появление интересующего нас результата. В свою очередь n - это общее количество проведенных экспериментов. Если мы бросили монетку 10 раз и 5 раз получили «решку», то m=5, а n=10.

Виды событий

Случается, что некоторый исход гарантированно наблюдается в каждом испытании - такое событие будет называться достоверным. Если оно не будет происходить никогда, то будет называться невозможным. Впрочем, такие события не используются в условиях задач по теории вероятности. Основные понятия, которые знать гораздо важнее - это совместные и несовместные события.

Случается, что при проведении эксперимента одновременно происходит сразу два события. Например, мы бросаем два кубика - в данном случае то, что на одном выпало «шесть», не гарантирует того, что на втором не выпадет другая цифра. Такие события будут называться совместными.

Если мы кидаем один кубик, то две цифры одновременно выпасть не смогут никогда. В данном случае исходы в виде выпавшей «единицы», «двойки» и т. д. будут рассматриваться как несовместные события. Очень важно различать, какие исходы имеют место в каждом конкретном случае - от этого зависит, какие формулы применять в задаче на нахождение вероятностей. Основные понятия теории вероятностей мы продолжим изучать спустя несколько абзацев, когда рассмотрим особенности сложения и умножения. Ведь без них ни одну задачу решить не удастся.

Сумма и произведение

Допустим, вы с другом бросаете кубик, и у него выпало «четыре». Вам, чтобы победить, необходимо получить «пять» или «шесть». В этом случае вероятности будут суммироваться: поскольку шансы выпадения обоих чисел равны 1/6, ответ будет выглядеть как 1/6 + 1/6 = 1/3.

А теперь представьте, что вы бросаете кубик по два раза, и ваш друг получил 11 очков. Теперь вам необходимо, чтобы два раза подряд выпало «шесть». События независимы друг от друга, поэтому вероятности понадобится перемножить: 1/6 * 1/6 = 1/36.

Среди основных понятий и теорем теории вероятностей следует обратить внимание на сумму вероятностей совместных событий, т. е. тех, которые могут происходить одновременно. Формула сложения в этом случае будет выглядеть так: P(A+B) = P(A) + P(B) - P(AB).

Комбинаторика

Очень часто нам требуется найти все возможные сочетания некоторых параметров объекта или вычислить количество каких-либо комбинаций (например, при подборе шифра). В этом нам поможет комбинаторика, теснейшим образом связанная с теорией вероятности. Основные понятия здесь включают некоторые новые слова, а ряд формул из этой темы вам наверняка пригодится.

Допустим, у вас есть три цифры: 1, 2, 3. Вам надо, используя их, написать все возможные трёхзначные числа. Сколько их будет? Ответ: n! (восклицательный знак означает факториал). Комбинации из некоторого количества разных элементов (цифр, букв и проч.), отличающиеся только порядком их расположения, называются перестановками.

Однако гораздо чаще мы сталкиваемся с такой ситуаций: имеется 10 цифр (от нуля до девяти), из которых составляется пароль или код. Предположим, его длина - 4 символа. Как рассчитать общее количество возможных кодов? Для этого существует специальная формула: (n!)/(n - m)!

Учитывая предложенное выше условие задачи, n=10, m=4. Далее требуются только простые математические расчёты. Кстати, называться такие комбинации будут размещением.

Наконец, существует понятие сочетаний - это последовательности, отличающиеся друг от друга хотя бы одним элементом. Высчитывается их число по формуле: (n!) / (m!(n-m)!).

Математическое ожидание

Важным понятием, с которым сталкивается студент уже на первых занятиях по предмету, является математическое ожидание. Оно представляет собой сумму всех возможных результирующих значений, помноженных на их вероятности. По сути, это среднее число, которое мы можем предсказать в качестве результата испытания. Например, есть три значения, для которых в скобках указаны вероятности: 0 (0,2); 1 (0,5); 2 (0,3). Посчитаем математическое ожидание: M(X) = 0*0,2 + 1*0,5 + 2*0,3 = 1,1. Таким образом, из предложенного выражения можно увидеть, что данная величина является постоянной и не зависит от исхода испытания.

Это понятие используется во многих формулах, и вы неоднократно с ним столкнетесь в дальнейшем. Работать с ним несложно: математическое ожидание суммы равно сумме мат. ожиданий - M(X+Y) = M(X) + M(Y). То же касается и произведения: M(XY) = M(X) * M(Y).

Дисперсия

Должно быть, со школьного курса физики вы помните, что дисперсия - это рассеяние. Каково её место среди основных понятий теории вероятностей?

Посмотрите на два примера. В одном случае нам дано: 10(0,2); 20(0,6); 30(0,2). В другом - 0(0,2); 20(0,6); 40(0,2). Математическое ожидание в обоих случаях будет одинаковое, как же тогда сравнивать эти ситуации? Ведь мы видим невооруженным глазом, что разброс значений во втором случае значительно больше.

Для этого и было введено понятие дисперсии. Чтобы получить её, необходимо рассчитать математическое ожидание от суммы разностей каждой случайной величины и математического ожидания. Возьмём числа из первого примера, записанного в предыдущем абзаце.

Сперва рассчитаем математическое ожидание: M(X) = 10*0,2 + 20*0,6 + 30*0,2 = 20. Тогда значение дисперсии: D(X) = 40.

Ещё одним из основных понятий статистики и теории вероятности является среднее квадратичное отклонение. Рассчитать его очень просто: нужно лишь взять корень квадратный из дисперсии.

Здесь же можно отметить такой простой термин, как размах. Это значение, обозначающее разницу между максимальным и минимальным значением в выборке.

Статистика

Некоторые базовые школьные понятия используются в науке очень часто. Двумя из них являются среднее арифметическое и медиана. Наверняка вы помните, как найти их значения. Но на всякий случай напомним: среднее арифметическое - это сумма всех значений, деленная на их количество. Если значений 10, то мы их складываем и делим на 10.

Медиана - это центральное значение в ряду всех возможных. Если мы имеем нечетное количество величин, то мы выписываем их в порядке возрастания и выбираем то, которое оказалось в середине. Если же у нас четное число значений, мы берем два центральных и делим на два.

Ещё два значения, располагающиеся между медианой и двумя крайними - максимальным и минимальным - значениями множества, именуются квартилями. Вычисляются они таким же образом - при нечетном количестве элементов берется число, располагающееся в середине ряда, а при четном - половина суммы двух центральных элементов.

Существует и специальный график, на котором можно увидеть все значения выборки, её размах, медиану, межквартальный интервал, а также выбросы - значения, не укладывающиеся в статистическую погрешность. Получающееся изображение носит весьма специфическое (и даже нематематическое) название - «ящик с усами».

Распределение

Распределение также относится к основным понятиям теории вероятности и математической статистики. Кратко говоря, оно представляет собой обобщенную информацию обо всех случайных величинах, которые мы можем увидеть в результате испытания. Главным параметром здесь будет вероятность появления каждого конкретного значения.

Нормальное распределение - это такое, которое имеет один центральный пик, в котором находится величина, встречающееся наиболее часто. От него дугами расходятся всё менее и менее вероятные исходы. В целом график со стороны похож на «горку». В дальнейшем вы узнаете, что с данным видом распределения теснейшим образом связана основополагающая для теории вероятности центральная предельная теорема. В ней описываются важные для рассматриваемого нами ответвления математики закономерности, очень полезные при разнообразных расчётах.

Но вернемся к теме. Существует ещё два вида распределений: ассиметричное и мультимодальное. Первое выглядит как половинка «нормального» графика, т. е. дуга спускается лишь в одну сторону от пиковой величины. Наконец, мультимодальное распределение - это такое, у которого существует несколько «верхних» значений. График, таким образом, то опускается, то поднимается. Наиболее частотное значение в любом распределении называется модой. Это также одно из основных понятий теории вероятностей и математической статистики.

Гауссово распределение

Гауссово, или нормальное, распределение - такое, в котором отклонение наблюдений от среднего подчиняется определенному закону.

Кратко говоря, основной разброс значений выборки экспоненциально стремится к моде - самому частотному из них. Ещё говорить точнее, то 99,6 % всех величин располагается в пределах трёх стандартных отклонений (помните, мы рассматривали это понятие выше?).

Гауссово распределение - одно из основных понятий теории вероятности. При помощи него можно понять, входит ли элемент по тем или иным параметрам в разряд «типичных» - так оценивается рост и вес человека в соответствии с возрастом, уровень интеллектуального развития, психологическое состояние и многое другое.

Как применить

Интересно, что «скучные» математические данные можно использовать с пользой для себя. Например, один молодой человек применил теорию вероятности и статистику, чтобы выиграть в рулетку несколько миллионов долларов. Правда, перед этим пришлось подготовиться - в течение нескольких месяцев записывать результаты игр в различных казино.

После проведения анализа он выяснил, что один из столов незначительно наклонен, а значит, ряд значений появляется статистически значимо чаще других. Немного расчётов, терпения - и вот владельцы заведения ломают головы, думая, как человеку может так повезти.

Есть целое множество повседневных бытовых задач, которые невозможно решить без обращения к статистике. Например, как определить, сколько магазину заказывать одежды разных размеров: S, M, L, XL? Для этого необходимо проанализировать, кто чаще покупает одежду в городе, в районе, в близлежащих магазинах. Если такую информацию не получить, владелец рискует потерять много денег.

Заключение

Мы рассмотрели целое множество основных понятий теории вероятностей: испытание, событие, перестановки и размещения, математическое ожидание и дисперсия, мода и нормальное распределение… Кроме того, мы рассмотрели ряд формул, на изучение которых в высшем учебном заведении отводится больше месяца занятий.

Не забывайте: математика необходима при изучении экономики, естественных наук, информационных технологий, инженерных специальностей. Статистику как одну из её областей здесь также нельзя обходить стороной.

Теперь дело за малым: практикуйтесь, решайте задачи и примеры. Даже основные понятия и определения теории вероятности забудутся, если не уделять время повторению. Кроме того, последующие формулы в значительной степени будут опираться на те, которые были нами рассмотрены. Поэтому постарайтесь их запомнить, тем более что их не так и много.

Основы теории вероятностей и математической статистики

Основы теории вероятностей и математической статистики Основные понятия теории вероятностей Предметом изучения теории вероятностей являются количественные закономерности однородных случайных явлений массового характера. Определение 1. Событием называется всякий возможный факт, о котором можно сказать, что он произойдет или не произойдет в данных условиях. Пример. Готовые ампулы, сошедшие с конвейера, могут оказаться либо стандартными, либо нестандартными. Один (любой) исход из указанных двух возможных называются событием. Различают три вида событий: достоверные, невозможные и случайные. Определение 2. Достоверным называют то событие, которое при соблюдении некоторых условий не может не произойти, т.е. обязательно произойдет. Пример. Если в урне содержатся только белые шары, то взятый наудачу из урны шар будет обязательно белый. В данных условиях факт появления белого шара будет достоверным событием. Определение 3. Невозможным называют то событие, которое при соблюдении некоторых условий не может произойти. Пример. Нельзя извлечь белый шар из урны, содержащей только черные шары. В этих условиях факт появления белого шара будет невозможным событием. Определение 4. Случайным называют событие, которое в одних и тех же условиях может произойти, но может и не произойти. Пример. Монета, брошенная вверх, может упасть так, что на ее верхней стороне окажется либо герб, либо цифра. Здесь появление сверху той или другой стороны монеты является случайным событием. Определение 5. Испытание - совокупность тех условий или действий, которые могут быть повторены бесконечное число раз. Пример. Подбрасывание монеты вверх - испытание, а возможный результат, т.е. выпадение на верхней стороне монеты либо герба, либо цифры является событием. Определение 6. Если события A i таковы, что при некотором данном испытании может произойти только одно из них и никаких других, не входящих в совокупность, то эти события называются единственно возможными. Пример. В урне лежат белые и черные шары и никаких других. Взятый наугад один шар может оказаться белым или черным. Эти события являются единственно возможными, т.к. появление шара другой окраски при данном испытании исключено. Определение 7. Два события A и B называются несовместными, если при данном испытании они не могут произойти вместе. Пример. Герб и цифра являются единственно возможными и несовместимыми событиями при однократном бросании монеты. Определение 8. Два события A и B называются совместными (совместимыми) при данном испытании, если появление одного из них не исключает возможность появления другого события при том же испытании. Пример. Возможно совместное появление орла и цифры при одном бросании двух монет. Определение 9. События A i называются равновозможными в данном испытании, если в силу симметрии есть основание считать, что ни одно из этих событий не является более возможным по сравнению с другими. Пример. Появление любой грани при одном бросании игральной кости является равновозможным событием (при условии, если кость сделана из однородного материала и имеет форму правильного шестигранника). Определение 10. События называются благоприятствующими (благоприятными) некоторому событию, если появление одного из этих события влечет появление данного события. Случаи, исключающие появление события, называются неблагоприятствующими этому событию. Пример. В урне имеется 5 белых и 7 черных шаров. При взятии наугад одного шара, в руках может оказаться или белый или черный шар. В данном случае появление белого шара благоприятствует 5 случаев, а появлению черного шара 7 случаев из общего количества 12 возможных случаев. Определение 11. Два единственно возможных и несовместимых событий называют противоположными друг другу. Если одно из этих событий обозначено A , то противоположное ему событие обозначают символом Ā. Пример. Попадание в цель и промах; выигрыш и проигрыш по билету лотереи - все это примеры противоположных событий. Определение 12. Если в результате какой-либо массовой операции, состоящей из n сходных между собой единичных опытов или наблюдений (испытаний), некоторое случайное событие появится m раз, то число m называют частотой случайного события, а отношение m / n называется его частостью. Пример. Среди первых 20 изделий, сошедших с конвейера, оказалось 3 изделия нестандартных (брак). Здесь число испытаний n =20, частота брака m =3, частость брака m / n = 3/20 = 0,15. Всякое случайное событие в заданных условиях имеет свою объективную возможность появления, причем у одних событий эта возможность появления больше, у других - меньше. Для количественного сравнения между собой событий по степени возможности их наступления с каждым случайным событием связывают некоторое действительное число, выражающего количественную оценку степени объективной возможности наступления данного события. Это число называют вероятностью события. Определение 13. Вероятность некоторого события есть числовая мера объективной возможности наступления этого события. Определение 14. ( Классическое определение вероятности ). Вероятностью события А называется отношение числа m случаев, благоприятствующих наступлению этого события, к числу n всех возможных случаев, т.е. Р(А) = m / n . Пример. Урна содержит 5 белых и 7 черных шаров, тщательно перемешанных. Какова вероятность того, что взятый наудачу из урны один шар окажется белым? Решение. В данном испытании имеется всего 12 возможных случаев, из них 5 благоприятствуют появлению белого шара. Поэтому вероятность появления белого шара Р=5/12. Определение 15. ( Статистическое определение вероятности ). Если при достаточно большом числе повторных испытаний по отношению к некоторому событию А будет замечено, что частость события колеблется около некоторого постоянного числа, то событие А имеет вероятность Р(А), приближенно равную частости, т.е. Р(А)~ m / n . Частость события при неограниченном числе испытаний называют статистической вероятностью. Основные свойства вероятности. 1 0 Если событие А влечет за собой событие В (А  В), то вероятность события А не превосходит вероятности события В. Р(А)≤Р(В) 2 0 Если события А и В равносильны (А  B , В  А, В=А), то их вероятности равны Р(А)=Р(В). 3 0 Вероятность любого события А не может быть отрицательным числом, т.е. Р(А)≥0 4 0 Вероятность достоверного события  равна 1. Р(  )=1. 5 0 Вероятность невозможного события  равна 0. Р(  )=0. 6 0 Вероятность любого случайного события А заключена между нулем и единицей 0<Р(А)<1 Основные формулы комбинаторики Определение 1 . Различные группы по m предметов, составленные из n однородных предметов ( m , n ), называются соединениями. Предметы, из которых составляют различные соединения, называют элементами. Существует 3 вида соединений: размещения, перестановки, сочетания. Определение 2. Размещениями по m элементов из данных n элементов ( m ≤ n ) называют такие соединения, которые отличаются друг от друга либо самими элементами, либо их порядком. Например, размещениями из трех предметов a , b и c по два будут следующие соединения: ab , ac , bc , ca , cb , ba . Число размещений из данных n элементов по m обозначают символом А n m = n ( n -1)( n -2)·....·( n - m +1). Пример. А 10 4 =10·9·8·7=5040. Определение 3. Перестановками из n элементов называют такие соединения, которые отличаются друг от друга только порядком элементов. Р n =А n n = n ( n -1)( n -2)...·3·2·1= n ! По определению 0!=1. Пример. Р 5 =5!=1·2·3·4·5=120. Определение 4. Сочетаниями из n элементов по m называются также соединения, которые отличаются друг от друга, по меньшей мере, одним элементом и каждое из которых содержит m различных элементов: C n m === Пример. Найти число сочетаний из 10 элементов по четыре. Решение. C 10 4 ==210. Пример. Найти число сочетаний из 20 элементов по 17. Решение. ==1040. Теоремы теории вероятностей Теорема сложения вероятностей Теорема 1 . Вероятность наступления одного какого-либо события из двух несовместимых событий А и В равно сумме вероятностей этих событий Р(А+В)=Р(А)+Р(В ). Пример. В урне 5 красных, 7 синих и 8 белых шаров, перемешанных между собой. Какова вероятность того, что взятый наугад один шар окажется не красным? Решение. Не красный шар - это или белый или синий шары. Вероятность появления белого шара (событие А) равна Р(А)= 8/20 = 2/5. Вероятность появления синего шара (событие В) равна Р(В)= 7/20. Событие, состоящее в появлении не красного шара, означает появление или А или В, т.к. события А и В несовместимы, то применима теорема 1. Искомая вероятность будет равна Р(А+В)=Р(А)+Р(В)=2/5+ +7/20=3/4. Теорема 2. Вероятность наступления одного из двух событий A или B равно сумме вероятностей этих событий минус вероятность их совместного появления P ( A + B )= P ( A )+ P ( B )+ P ( AB ). Теорема умножения вероятностей Определение 1. Два события A и B называются независимыми друг от друга, если вероятность одного из них не зависит от наступления или ненаступления другого. Пример. Пусть A - событие, состоящее в появлении герба при первом бросании монеты, а B - событие, состоящее в появлении герба при втором бросании монеты, то события A и B не зависят друг от друга, т.е. результат первого бросания монеты не может изменить вероятность появления герба при втором бросании монеты. Определение 2. Два события A и B называются зависящими друг от друга, если вероятность одного из них зависит от наступления или ненаступления другого. Пример. В урне 8 белых и 7 красных шаров, перемешанных между собой. Событие A - появление белого шара, а событие B - появление красного шара. Будем брать из урны наугад два раза по одному шару, не возвращая их обратно. До начала испытания вероятность появления события A равна P ( A )=8/15, и вероятность события B равна P ( B )=7/15. Если предположить, что в первый раз был взят белый шар (событие A ), то вероятность появления события B при втором испытании будет P ( B )=7/14=1/2. Если в первый раз был взят красный шар, то вероятность появления красного шара при втором извлечении равна P ( B )=6/14=3/7. Определение 3. Вероятность события B , вычисленная в предположении, что перед этим наступило связанное с ним событие A , называется условной вероятностью события B и обозначается PA ( B ). Теорема 3 . Вероятность совместного наступления двух зависимых событий ( A и B ) равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие произошло, т.е. P ( AB )= P ( A )· P A ( B )= P ( B )· P B ( A ). Теорема 4. Вероятность совместного наступления нескольких зависимых событий равно произведению вероятности одного из них на условные вероятности всех остальных событий, вычисленные в предположении, что все предыдущие события уже наступили: P(A 1 A 2 A 3 ...A k )=P(A 1 )·P A1 (A 2 )·P A1A2 ·P(A 3 )...·P A1A2…A k-1 (A k ) Теорема 5 . Вероятность совместного наступления двух независимых событий A и B равна произведению вероятностей этих событий P ( AB )= P ( A )· P ( B ). Теорема 6 . Вероятность совместного наступления нескольких независимых событий A 1 , A 2 , ... A k равна произведению их вероятностей, т.е. P ( A 1 A 2 ... A k )= P ( A 1 )· P ( A 2 )·...· P ( A k ). Пример. Два стрелка делают одновременно по одному выстрелу в одну цель. Какова вероятность того, что оба попадут, если известно, что первый стрелок в среднем дает 7 попаданий, а второй 8 попаданий на каждые 10 выстрелов? Какова вероятность поражения мишени? Решение. Вероятность попадания первого стрелка (событие A ) равна P ( A )=0,8, вероятность попадания второго стрелка (событие B ) равна P ( B )=0,7. События A и B независимы друг от друга, поэтому вероятность совместного наступления этих событий (совместное попадание в цель) найдем по теореме умножения для независимых событий: P ( AB )= P ( A ) P ( B )=0,8·0,7=0,56. Вероятность поражения мишени означает попадание в мишень хотя бы одного стрелка. Так как попадание в мишень первого и второго стрелков являются событиями совместными, то применение теоремы сложения вероятностей для совместных событий дает следующий результат: P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)·P(B)=0,8+0,7- 0,8·0,7=0,94. 5.3.3. Формула полной вероятности Определение 4. Если при некотором испытании может произойти одно какое-либо событие из нескольких несовместных A 1 , A 2 ,..., A k , и при этом никаких других событий быть не может, но одно из указанных событий обязательно произойдет, то группу событий A 1 , A 2 ,..., A k называют полной группой событий. Теорема 7. Сумма вероятностей событий, образующих полную группу, равна единице: P ( A 1 )+ P ( A 2 )+...+ P ( A k )=1. Следствие. Сумма вероятностей двух противоположных событий равна единице: P ( A )+ P ( A )=1. Если вероятность одного события обозначим через p , вероятность противоположного ему события обозначим через q , тогда p + q =1. Пример. Вероятность попадания в цель равна 0,94. Найти вероятность непопадания. Решение . Попадание в цель и непопадание являются противоположными событиями, поэтому, если p =0,94, то q =1- p =1-0,94=0,06. Теорема 8 . Если случайные события A 1 , A 2 ... A n образуют полную систему, и если событие B может осуществляться только совместно с каким-нибудь одним из этих событий, то вероятность наступления события B можно определить по формуле: P(B)=P(A 1 )P A1 (B)+P(A 2 )P A2 (B)+...+P(A n )P A n (B) Это равенство называется формулой полной вероятности . Пример. На склад готовой продукции поступили изделия из трех цехов, в том числе: 30% из I -го цеха, 45% из II цеха и 25% из III цеха. Среди изделий I цеха брак составляет 0,6%, по II цеху 0,4% и по III цеху-0,16%. Какова вероятность того, что взятое наугад для контроля одно изделие окажется с браком? Решение. Одно изделие может быть взято или из продукции I цеха (событие A 1 ), или из продукции II цеха (событие A 2 ), или из продукции III цеха (событие A 3 ). Вероятности этих событий будут: P ( A 1 )=0,30; P ( A 2 )=0,45; P ( A 3 )=0,25. Вероятность того, что изделие с браком (событие B ) будет взято из продукции I цеха, есть условная вероятность P A 1 ( B ). Она равна P A 1 ( B )=0,006. Вероятность того, что изделие с браком будет взято из продукции II цеха P A 2 ( B )=0,004 и из продукции III цеха P A 3 ( B )=0,0016. Теперь по формуле полной вероятности найдем вероятность того, что взятое наугад одно изделие будет с браком: P(B)=P(A 1 )P A1 (B)+P(A 2 )P A2 (B)+...+P(A 3 )P A3 (B) = 0,3·0,006+0,45·0,004+0,25·0,0016=0,004. Формула Бернулли Теорема 9. Пусть производится n независимых повторных испытаний по отношению к некоторому событию A . Пусть вероятность появления этого события в каждом отдельном испытании остается неизменно равной p , а вероятность появления противоположного события Ā, есть q . Тогда вероятность появления интересующего нас события A равно m раз при указанных n испытаниях рассчитывается по формуле Бернулли: P m , n = p m q n - m , так как, то P m , n = · p m · q n - m Пример. Коэффициент использования станка в среднем равен 0,8. В цехе имеется 5 станков. Какова вероятность того, что в некоторый момент времени окажутся работоспособными только 3 станка? Решение. Задача подходит под схему повторных испытаний и решается по формуле Бернулли: n =5, m =3, p =0,8 и q =1-0,8=0,2: P 3,5 = (0,8) 3 ·(0,2) 2 =0,2084. Асимптотическая формула Пуассона В статистической практике нередко встречаются такие примеры независимых испытаний, когда при большом числе n независимых испытаний вероятность Р появления события в каждом отдельном испытании оказывается сравнительно малой величиной, стремящейся к нулю с увеличением числа испытаний . При этих условиях для вычисления вероятности Р m , n появление события m раз в n испытаниях пользуются асимптотической формулой Пуассона : Р m,n ≈e -a , где a=np Пример. Доля брака всей продукции завода составляет 0,5%. Какова вероятность того, что в партии, состоящей из 400 изделий, окажется три изделия бракованных? Решение. В условии примера дано p =0,005, n =400, m =3, следовательно, a = np =400·0,005=2. Вероятность данного события найдем по формуле Пуассона Р m , n (3,400) = 0,1804. Случайные величины и их числовые характеристики Определение 1. Случайной величиной называется переменная величина, которая в результате опыта принимает одно значение, причем неизвестно заранее, какое именно. Определение 2. Дискретной называется случайная величина, которая может принимать лишь отдельные, изолированные друг от друга значения. Случайная дискретная величина задается законом распределения, связывающим принимаемые ею значения x i и вероятности их принятия p i . Закон распределения чаще всего задается в табличной форме. Графическое представление закона распределения случайной дискретной величины – многоугольник распределения . Числовые характеристики дискретной случайной величины. 1) Математическое ожидание. Определение 3. Математическое ожидание случайной дискретной величины X с конечным числом значений называется сумма произведений возможных ее значений на их вероятности: M ( X ) = μ = x 1 p 1 + x 2 p 2 +...+ x n p n = . Вероятности всех значений случайной дискретной величины удовлетворяют условию нормировки: Свойства математического ожидания. 1 0 Математическое ожидание постоянной (неслучайной) величины С равно самой постоянной M ( C )= C . 2 0 Математическое ожидание алгебраической суммы нескольких случайных величин равно алгебраической сумме математических ожиданий слагаемых M ( X 1 ± X 2 ±...± X n ) = M ( X 1 ) ± M ( X 2 ) ±…± M ( X n ). 3 0 Константу можно вынести за знак математического ожидания M ( CX )= CM ( X ). 4 0 Математическое ожидание произведения нескольких независимых случайных величин равно произведению математических ожиданий этих величин: M ( X 1 X 2 ... X n ) = M ( X 1 ) M ( X 2 )... M ( X ) n . 2) Дисперсия дискретной случайной величины. Определение 4. Дисперсией случайной дискретной величины X называется математическое ожидание квадрата отклонения этой величины от ее математического ожидания. D ( X ) = M {[ X - M ( X )] 2 } = , где M ( X ) = μ Для вычисления дисперсии более удобна формула: D ( X )= M ( X 2 )-[ M ( X )] 2 , т.е. дисперсия случайной величины равна разности между математическим ожиданием квадрата этой величины и квадратом ее математического ожидания. Свойства дисперсии. 1 0 Дисперсия постоянной величины равна нулю D (С) = 0. 2 0 Постоянный множитель можно выносить за знак дисперсии, предварительно возведя его в квадрат: D ( CX ) = C 2 D ( X ). 3 0 Дисперсия суммы нескольких независимых случайных величин равна сумме дисперсий этих величин: D ( X 1 +...+ X n ) = D ( X 1 )+...+ D ( X n ). 4 0 Дисперсия разности двух независимых случайных величин равна сумме дисперсий этих величин D ( X - Y )= D ( X )+ D ( Y ). 3). Среднее квадратическое отклонение Определение 5 . Средним квадратическим отклонением случайной величины называется квадратный корень из дисперсии σ ( X )=. Пример. Найти математическое ожидание и дисперсию случайной величины X , которая задана следующим законом распределения: Решение. Найдем математическое ожидание: M ( x )=1·0,3+2·0,5+5·0,2=2,3. Найдем все возможные значения квадрата отклонения. [ x 1 - M ( x )] 2 =(1-2,3) 2 =1,69 [ x 2 - M ( x )] 2 =(2-2,3) 2 =0,09 [ x 3 - M ( x )] 2 =(5-2,3) 2 =7,29 Напишем закон распределения квадрата отклонения Найдем дисперсию: D ( x )=1,69·0,3+0,09·0,5+7,29·0,2=2,01. Числовые характеристики непрерывной случайной величины. Определение 6. Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Определение 7. Интегральной функцией распределения называют функцию F ( x ), определяющую для каждого значения x вероятность того, что случайная величина X примет значение меньше x , т.е. F ( x )= P ( X < x ). Свойства интегральной функции распределения 1 0 Значения интегральной функции распределения принадлежат отрезку 0≤ F ( x ) ≤1. 2 0 Функция распределения есть неубывающая функция. Следствие 1. Вероятность того, что случайная величина X попадет в интервал ( a , b ), равна приращению ее интегральной функции распределения на этом интервале P ( a < x < b )= F ( b )- F ( a ). Следствие 2. Вероятность того, что случайная непрерывная величина X примет одно определенное значение равна нулю P ( X = x 1 )=0. 3 0 Если возможные значения случайной величины X принадлежат интервалу ( a , b ), то F ( x )=0 при x ≤ a и F ( x )=1 при x ≥ a . Определение 8. Дифференциальной функцией распределения f ( x ) (или плотностью вероятности) называется производная от интегральной функции f ( x )= F "( x ). Интегральная функция является первообразной для дифференциальной функции, поэтому вероятность того, что случайная непрерывная величина x примет значение, принадлежащее интервалу ( a , b ), определяется равенством: P ( a < x < b )== F ( b )- F ( a )Зная дифференциальную функцию, можно найти функцию распределения: F ( x )= Свойства дифференциальной функции распределения 1 0 Дифференциальная функция распределения есть функция неотрицательная f ( x ) ≥0 2 0 Несобственный интеграл от дифференциальной функции распределения равен единице (условие нормировки): . 1) Математическое ожидание. Математическим ожиданием случайной непрерывной величины X , возможные значения которой прина д лежат отрезку ( a , b ), называется опр е деленный интеграл: M ( X ) = , где f ( x )-плотность вероятности случайной величины X . 2) Дисперсия. Дисперсия непрерывной случайной величины X есть математическое ожидание квадрата отклонения зтой величины от ее математического жидания D(X) = M{ 2 }.Следовательно, если возможные значения случайной величины X принадлежат отрезку ( a ; b ), то D ( x )= или D ( x )= 3) Среднее квадратическое отклонение определяется так: σ ( x ) = Пример. Найти дисперсию случайной величины X , заданной интегральной функцией F ( x )= Решение. Найдем дифференциальную функцию: f ( x )= F ’ ( x )= Выислим математическое ожидание M ( x ) = . Найдем искомую дисперсию D ( x ) = = = 2/4=4/3. Вероятность попадания нормально распределенной случайной величины X в заданный интервал Определение 9. Распределение вероятностей случайной непрерывной величины X называется нормальным, если плотность вероятности описывается формулой: , где μ - математическое ожидание, σ - среднее квадратическое отклонение. Определение 10. Нормальное распределение с параметрами μ = 0, σ = 1 называется нормированным или стандартным. Плотность вероятности нормированного нормального распределения описывается следующей формулой: . Значения данной функции для неотрицательных значений затабулированы. В силу четности функции φ ( x ) значения для отрицательных чисел легко определить φ (- x )= φ ( x ). Пример. Математическое ожидание нормального распределенной случайной величины X равно μ =3 и среднее квадратическое отклонение σ =2. Написать дифференциальную функцию X . Решение. f ( x )= Если случайная величина X распределена по нормальному закону, то вероятность ее попадания в интервал ( a , b ) определяется следующим о б разом: P(a S2=DB= = , которая является несмещенной оценкой генеральной дисперсииDГ. Для оценки среднего квадратического отклонения генеральной совокупности используют "исправленное" среднее квадратическое отклонение, которое равно квадратному корню из "исправленной" дисперсии. S= Определение 14. Доверительным называют интервал (θ*-δ;θ*+δ), который покрывает неизвестный параметр с заданной надежностью γ. Доверительный интервал для оценки математического ожидания нормального распределения при известном среднем квадратическом отклоненииσ выражаются формулой: =2Ф(t)=γ гдеε=tδ/ - точность оценки. Числоt определяется из уравнения: 2Ф(t)=γ по таблицам функции Лапласа. Пример. Случайная величинаX имеет нормальное распределение с известным средним квадратическим отклонениемσ=3. Найти доверительные интервалы для оценки неизвестного математического ожиданияμ по выборочным среднимX , если объем выборкиn=36 и дана надежность оценкиγ=0,95. Решение. Найдемt из соотношения 2Ф(t)=0,95; Ф(t)=0,475. Из таблиц находимt=1,96. Найдем точность оценкиσ =tδ/=1,96·3/= 0,98. Доверительный интервал (x -0,98;x +0,98). Доверительные интервалы для оценки математического ожидания нормального распределения при неизвестномσ определяется с помощью распределения Стьюдента сk=n-1 степенями свободы: T= , гдеS - "исправленное" среднее квадратическое отклонение,n - объем выборки. Из распределения Стьюдента доверительный интервал покрывает неизвестный параметрμ с надежностьюγ: или, гдеtγ- коэффициент Стьюдента находится по значениямγ (надежности) иk (числу степеней свободы) из таблиц. Пример. Количественный признакX генеральной совокупности распределен нормально. По выборке объемаn=16 найдены выборочная средняяxB=20,2 и "исправленное среднее" квадратическое отклонениеS=0,8. Оценить неизвестное математическое ожиданиеm при помощи доверительного интервала с надежностьюγ=0,95. Решение. Из таблицы найдем:tγ=2,13. Найдем доверительные границы: =20,2-2,13·0,8=19,774 и =20,2+ +2,13·0,8/=20,626. Итак, с надежностью 0,95 неизвестный параметрμ находится в интервале 19,774<μ <20,626. .Элементы теории корреляции Определение 1. Статистической называют зависимость, при которой изменение одной из величин влечет изменение распределения другой. Определение 2. Если при изменении одной из величин изменяетсясреднее значение другой величины, то такая статистическая зависимость называется корреляционной. Пример. ПустьY-урожай зерна,X-количество удобрений. С одинаковых по площади участков земли при равных количествах внесенных удобрений снимают различный урожай, т.е.Y не является функциейX. Это объясняется влиянием случайных факторов (осадки, температура воздуха и т.д.) Вместе с тем средний урожай является функцией от количества удобрений, т.е.Y связан сX корреляционной зависимостью. Определение 3. Среднее арифметическое значение величиныY, вычисленное при условии, чтоX принимает фиксированное значение, называется условным средним и обозначается. Определение 4. Условным средним называют среднее арифметическое наблюдавшихся значенийx, соответствующихY=y. Можно составить таблицу, определяющую соответствие между значениямиxi и условными среднимиyxi, а затем в декартовой системе координат строят точкиM(xi;yxi) и соединяют их отрезками прямых. Полученная линия называется эмпирической линией регрессииY наX. Аналогично строится эмпирическая линия регрессииX наY. Если точкиMi(xi;yxi) иNi(xy;y) располагаются вдоль прямой, то линия регрессии называется линией прямой регрессии и операция "сглаживания" ломаной сводится к нахождению параметровa иb функцииy=ax+b. Из двух нормальных уравнений: находят коэффициентыa иb. ρxy=a== выборочный коэффициент регрессии признакаY наX. b== Уравнение прямой линии регрессии признакаY наX имеет вид: - =ρyx(x-). Проведя аналогичные расчеты, можно получить следующие математические выражения, характеризующие прямую регрессию признакаX наY:x=cy+d. ρyx=c= = - выборочный коэффициент регрессии признакаX наY. d= - свободный член уравнения. = - уравнение прямой линии регрессии признакаX наY. Показателем тесноты связи являетсякоэффициент корреляции, используемый только при линейной корреляции:r = =. Для решения задач удобна следующая формула: r == . В формуле для коэффициента корреляцииr = числитель дроби всегда меньше знаменателя, следовательно, коэффициент корреляции - всегда правильная дробь между нулем и единицей -1≤r≤+1. Положительное значениеr указывает на прямую связь между признаками; отрицательное - на обратную связь между ними. Данные для корреляционного анализа могут быть сгруппированы в виде корреляционной таблицы. Рассмотрим пример. Пусть проведено наблюдение двух признаков (X иY) у 15 объектов. Составлена следующая таблица первичных данных: Упорядочим первичные данные, поместив их в таблицу: В первом столбце запишем в порядке возрастания значенияxi: 8,9,10,11, а во второй строке - в том же порядке значенияyi: 18,20,24,27,30. На пересечении строк и столбцов запишем число повторений одинаковых пар (xi;yi) в ряду наблюдений. Требуется установить и оценить зависимость случайной величиныY от величиныX, используя данные корреляционной таблицы. n = 15 - объем выборки Используем формулы для корреляционных расчетов. Уравнение регрессииX наY: xy=cy +d =ρxyy+d, где ρxy=. Величина коэффициента корреляцииr=± С учетом частотnx иny формулы регрессионного анализа несколько видоизменяется: ρxy=, где; ; ; ; . .Проверка статистических гипотез. Определение 1. Статистической называют гипотезу о виде неизвестного распределения или о параметрах известных распределений. Определение 2. Нулевой (основной) называют выдвинутую гипотезуH0. Определение 3. Конкурирующей (альтернативной) называют гипотезуH1, которая противоречит нулевой. Определение 4. Статистическим критерием называют специально подобранную величину, распределение которой известно (хотя бы приближенно), которая используется для проверки статистической гипотезы. Определение 5. Критической областью называют совокупность значений критерия, при которых нулевую гипотезу отвергают. Определение 6. Областью принятия гипотезы (областью допустимых значений) называют совокупность значений критерия, при которых нулевую гипотезу принимают. Основной принцип проверки статистических гипотез: если наблюдаемое значение критерия принадлежит критической области, то нулевую гипотезу отвергают; если наблюдаемое значение критерия принадлежит области принятия гипотезы, то гипотезу принимают. Определение 7. Критическими точками (границами)kkp называют точки, отделяющие критическую область от области принятия гипотезы. Определение 8. Правосторонней называют критическую область, определяемую неравенствомK>kkp, гдеkkp>0. Определение 9. Левосторонней называют критическую область, определяемую неравенствомKk2 гдеk2>k1. Для отыскания критической области задаются уровнем значимостиα и ищут критические точки, исходя из следующих соотношений: а) для правосторонней критической областиP(K>kkp)=α; б) для левосторонней критической областиP(K<-kkp)=α; в) для двусторонней критической областиP(K>kkp)=α/2 иP(K<-kkp)=α/2. Пример. По двум независимым выборкам, объемы которыхn1=11 иn2=14, извлеченным из нормальных генеральных совокупностейX иY, найдены исправленные выборочные дисперсииSx2=0,76;Sy2=0,38. При уровне зависимостиα=0,05 проверить нулевую гипотезуH0:Д(x)=Д(y) о равенстве генеральных дисперсий, при конкурирующей гипотезе:H1:Д(x)>Д(y) Решение. Найдем отношение большой исправленной дисперсии к меньшей:Fнабл= =2. Так какH1:Д(x)>Д(y), то критическая область - правосторонняя. По таблице поα=0,05 и числам степеней свободыk1=n1-1=10;k2=n2-1=13 находим критическую точкуFкр(0,05;10,13)= 2,67. Tак какFнаблПо данной теме ознакомьтесь с методическими указаниями по этой теме и внимательно разберите решение примеров из данного пособия. Выполните упражнения для самопроверки.

Элементы теории вероятностей.

Основные понятия комбинаторики. Задачи, при решении которых приходится составлять различные комбинации из конечного числа элементов и производить подсчет числа всех возможных таких комбинаций, называются комбинаторными .

Этот раздел математики находит широкое практическое применение во многих вопросах естествознания и техники.

Размещения. Пусть имеется множество, содержащее n элементов. Каждое его упорядоченное подмножество, содержащее по m элементов, называется размещением из n элементов по m элементов.

Из определения вытекает, что и что размещения из n элементов по m – это m -элементные подмножества, отличающиеся составом элементов или порядком их следования.

Число размещений из n элементов по m элементов в каждом обозначаются и вычисляются по формуле .

Число размещений из n элементов по m элементов в каждом равно произведению m последовательно убывающих натуральных чисел, из которых большее есть n .

Для кратности произведения первых n натуральных чисел принято обозначать (n -факториал):

Тогда формулу числа размещений из n элементов по m элементов можно записать в другом виде: .

Пример 1. Сколькими способами из группы, включающей 25 студентов, можно выбрать актив группы в составе старосты, заместителя старосты и профорга?

Решение. Состав актива группы является упорядоченным множеством из 25 элементов по три элемента. Значит. Искомое число способов равно числу размещений из 25 элементов по три элемента в каждом: , или .

Пример 2. Перед выпуском группа студентов в 30 человек обменялась фотографиями. Сколько всего было роздано фотографий?

Решение. Передача фотографии одним студентом другому есть размещение из 30 элементов по два элемента. Искомое число фотографий равно числу размещений из 30 элементов по два элемента в каждом: .

Перестановки. Размещения из n элементов по n элементов называются перестановками из n элементов.

Из определения следует, что перестановки являются частным случаем размещений. Так как каждая перестановка содержит все n элементов множества, то различные перестановки отличаются друг от друга только порядком элементов.

Число перестановок из n элементов данного множества обозначают и вычисляют по формуле

Пример 3. Сколько четырехзначных чисел можно составить из цифр 1, 2, 3, 4 без повторений?

Решение. По условию дано множество из четырех элементов, которые требуется расположить в определенным порядке. Значит, требуется найти количество перестановок из четырех элементов: , т.е. из цифр 1. 2, 3, 4 можно составить 24 четырехзначных числа (без повторений цифр)


Пример 4. Сколькими способами можно рассадить 10 гостей по десяти местам за праздничным столом?

Решение. Искомое число способов равно числу перестановок из десяти элементов: .

Сочетания. Пусть имеется множество, состоящее из n элементов. Каждое его подмножество, состоящее из m элементов, называется сочетанием из n элементов по m элементов.

Таким образом, сочетания из n элементов по m элементов – это все m -элементные подмножества n -элементного множества, причем различными множествами считаются только те, которые имеют неодинаковый состав элементов.

Подмножества, отличающиеся друг от друга порядком следования элементов, не считаются различными.

Число подмножеств по m элементов в каждом, содержащихся во множестве из n элементов, т.е. число сочетаний из n элементов по m элементов в каждом, обозначают и вычисляют по формуле: или .

Число сочетаний обладает следующим свойством: ().

Пример 5. Сколько всего игр должны провести 20 футбольных команд в однокруговом чемпионате?

Решение. Так как игра любой команды A с командой B совпадает с игрой команды B с командой A , то каждая игра есть сочетание из 20 элементов по 2. искомое число всех игр равно числу сочетаний из 20 элементов по 2 элемента в каждом: .

Пример 6. Сколькими способами можно распределить 12 человек по бригадам, если в каждой бригаде по 6 человек?

Решение. Состав каждой бригады является конечным множеством из 12 элементов по 6. значит, искомое число способов равно числу сочетаний из 12 элементов по 6 в каждом:
.

Случайные события. Вероятность события. Теория вероятностей – это математическая наука, которая изучает закономерности в случайных событиях. К основным понятиям теории вероятностей относятся испытания и события.

Под испытанием (опытом) понимают реализацию данного комплекса условий, в результате которого непрерывно произойдет какое-либо событие.

Например, бросание монеты – испытание; появление герба ил и цифры – события.

Случайным событием называется событие, связанное с данным испытанием, которое при осуществлении испытания может произойти, а может и не произойти. Слово «случайное» для краткости часто опускают и говорят просто «событие». Например, выстрел по цели – это опыт, случайные события в этом опыте – попадание в цель или промах.

Событие в данных условиях называется достоверным , если в результате опыта оно непрерывно должно произойти, и невозможным , если оно заведомо не произойдет. Например, выпадение не более шести очков при бросании одной игральной кости – достоверное событие; выпадение десяти очков при бросании одной игральной кости – невозможное событие.

События называются несовместимыми , если никакие два из них не могут появится вместе. Например, попадание и промах при одном выстреле – это несовместимые события.

Говорят, что несколько событий в данном опыте образуют полную систему событий, если в результате опыта непременно должно произойти хотя бы одно из них. Например, при бросании игральной кости события, состоящие в выпадении одного, двух, трех, четырех, пяти и шести очков, образуют полную группу событий.

События называются равновозможными , если ни одно из них не является объективно более возможным, чем другие. Например, при бросании монеты выпадение герба или числа – события равновозможные.

Каждое событие обладает какой-то степенью возможности. Числовая мера степени объективной возможности события – это вероятность события. Вероятность события A обозначается P(A) .

Пусть из системы n несовместных равновозможныхисходов испытания m исходов благоприятствуют событию A . Тогда вероятностью события A называют отношение m числа исходов, благоприятствующих событию A , к числу всех исходов данного испытания: .

Эта формула носит название классического определения вероятности.

Если B – достоверное событие, то n=m и P(B)=1 ; если С – невозможное событие, то m=0 и P(С)=0 ; если A – случайное событие, то и .

Таким образом, вероятность события заключается в следующих пределах: .

Пример 7. Игральную кость подбрасывают один раз. Найти вероятность событий: A – появление четного числа очков; B – появление не менее пяти очков; C – появление не более пяти очков.

Решение. Опыт имеет шесть равновозможных независимых исходов (появление одного, двух, трех, четырех, пяти и шести очков), образующих полную систему.

Событию A благоприятствуют три исхода (выпадение двух, четырех и шести очков), поэтому ; событию B – два исхода (выпадение пяти и шести очков), поэтому ; событию C – пять исходов (выпадение одного, двух, трех, четырех, пяти очков), поэтому .

При вычислении вероятности часто приходится использовать формулы комбинаторики.

Рассмотрим примеры непосредственного вычисления вероятностей.

Пример 8. В урне 7 красных шаров и 6 синих шаров. Из урны одновременно вынимают два шара. Какова вероятность того, что оба шара красные (событие A )?

Решение. Число равновозможных независимых исходов равно .

Событию A благоприятствуют исходов. Следовательно, .

Пример 9. В партии из 24 деталей пять бракованных. Из партии выбирают наугад 6 деталей. Найти вероятность того, что среди этих 6 деталей окажутся 2 бракованных (событие B )?

Решение. Число равновозможных независимых исходов равно .

Подсчитаем число исходов m , благоприятствующих событию B . Среди шести взятых наугад деталей должно быть 2 бракованных и 4 стандартных. Две бракованные детали из пяти можно выбрать способами, а 4 стандартных детали из 19 стандартных деталей можно выбрать
способами.

Каждая комбинация бракованных деталей может сочетаться с каждой комбинацией стандартных деталей, поэтому . Следовательно,
.

Пример 10. Девять различных книг расставлены наудачу на одной полке. Найти вероятность того, что четыре определенные книг окажутся поставленными рядом (событие С )?

Решение. Здесь число равновозможных независимых исходов есть . Подсчитаем число исходов т , благоприятствующих событию С . Представим себе, что четыре определенные книги связаны вместе, тогда связку можно расположить на полке способами (вязка плюс остальные пять книг). Внутри связки четыре книги можно переставлять способами. При этом каждая комбинация внутри связки может сочетаться с каждым из способов образования связки, т.е. . Следовательно, .

Теория вероятностей и математическая статистика


1.ТЕОРЕТИЧЕСКАЯ ЧАСТЬ


1 Сходимость последовательностей случайных величин и вероятностных распределений


В теории вероятностей приходится иметь дело с разными видами сходимости случайных величин. Рассмотрим следующие основные виды сходимости: по вероятности, с вероятностью единица, среднем порядка р, по распределению.

Пусть, … - случайные величины, заданные на некотором вероятностном пространстве (, Ф, P).

Определение 1. Последовательность случайных величин, … называется сходящейся по вероятности к случайной величине (обозначение:), если для любого > 0


Определение 2. Последовательность случайных величин, … называется сходящейся с вероятностью единица (почти наверное, почти всюду) к случайной величине, если


т.е. если множество исходов, для которых () не сходятся к (), имеет нулевую вероятность.

Этот вид сходимости обозначают следующим образом: , или, или.

Определение 3. Последовательность случайных величин, … называется сходящейся в среднем порядка р, 0 < p < , если


Определение 4. Последовательность случайных величин,… называется сходящейся по распределению к случайной величине (обозначение:), если для любой ограниченной непрерывной функции


Сходимость по распределению случайных величин определяется только в терминах сходимости их функций распределения. Поэтому об этом виде сходимости имеет смысл говорить и тогда, когда случайные величины заданы на разных вероятностных пространствах.

Теорема 1.

а) Для того чтобы (Р-п.н.), необходимо и достаточно, чтобы для любого > 0

) Последовательность {} фундаментальна с вероятностью единица тогда и только тогда, когда для любого > 0.

Доказательство.

а) Пусть А = {: |- | }, А= А. Тогда



Поэтому утверждение а) является результатом следующей цепочки импликаций:

Р{: }= 0 P() = 0 = 0 Р(А) = 0, m 1 P(A) = 0, > 0 P() 0, n 0, > 0 P{ } 0,

n 0, > 0.) Обозначим = {: }, = . Тогда {: {()} не фундаментальна } = и так же, как в а) показывается, что {: {()} не фундаментальна } = 0 P{ } 0, n.

Теорема доказана


Теорема 2. (критерий Коши сходимости почти наверно)

Для того чтобы последовательность случайных величин {} была сходящейся с вероятностью единица (к некоторой случайной величине), необходимо и достаточно, чтобы она была фундаментальна с вероятностью единица.

Доказательство.

Если, то +

откуда вытекает необходимость условия теоремы.

Пусть теперь последовательность {} фундаментальна с вероятностью единица. Обозначим L = {: {()} не фундаментальная}. Тогда для всех числовая последовательность {} является фундаментальной и, согласно критерию Коши для числовых последовательностей, существует (). Положим



Так определенная функция является случайной величиной и.

Теорема доказана.


2 Метод характеристических функций


Метод характеристических функций является одним из основных средств аналитического аппарата теории вероятностей. Наряду со случайными величинами (принимающими действительные значения) теория характеристических функций требует привлечения комплекснозначных случайных величин.

Многие из определений и свойств, относящихся к случайным величинам, легко переносятся и на комплексный случай. Так, математическое ожидание М? комплекснозначной случайной величины ?=?+?? считается определенным, если определены математические ожидания М? и М?. В этом случае по определению полагаем М? = М? + ?М?. Из определения независимости случайных элементов следует, что комплекснозначные величины ?1 =?1+??1 , ?2=?2+??2 независимы тогда и только тогда, когда независимы пары случайных величин (?1 , ?1) и (?2 , ?2), или, что то же самое, независимы ?-алгебры F?1, ?1 и F?2, ?2.

Наряду с пространством L2 действительных случайных величин с конечным вторым моментом можно ввести в рассмотрение гильбертово пространство комплекснозначных случайных величин ?=?+?? с М |?|2?|2= ?2+?2, и скалярным произведением (?1 , ?2)= М?1?2¯, где ?2¯- комплексно-сопряженная случайная величина.

При алгебраических операциях векторы Rn рассматриваются как алгебраические столбцы,



Как вектор-строки, a* - (а1,а2,…,аn). Если Rn , то под их скалярным произведением (a,b) будет пониматься величина. Ясно, что

Если аRn и R=||rij|| - матрица порядка nхn, то



Определение 1. Пусть F = F(х1,….,хn) - n-мерная функция распределения в (, ()). Ее характеристической функцией называется функция


Определение 2. Если? = (?1,…,?n) - случайный вектор, определенный на вероятностном пространстве со значениями в, то его характеристической функцией называется функция



где F? = F?(х1,….,хn) - функция распределения вектора?=(?1, … , ?n).

Если функция распределения F(х) имеет плотность f = f(х), то тогда



В этом случае характеристическая функция есть не что иное, как преобразование Фурье функции f(x).

Из (3) вытекает, что характеристическую функцию??(t) случайного вектора можно определить также равенством



Основные свойства характеристических функций (в случае n=1).

Пусть? = ?(?) - случайная величина, F? = F? (х) - её функция распределения и - характеристическая функция.

Следует отметить, что если, то.



В самом деле,

где воспользовались тем, что математическое ожидание произведения независимых (ограниченных) случайных величин равно произведению их математических ожиданий.

Свойство (6) является ключевым при доказательстве предельных теорем для сумм независимых случайных величин методом характеристических функций. В этой связи, функция распределения выражается через функции распределения отдельных слагаемых уже значительно более сложным образом, а именно, где знак * означает свертку распределений.

С каждой функцией распределения в можно связать случайную величину, имеющую эту функцию в качестве своей функции распределения. Поэтому при изложении свойств характеристических функций можно ограничиться рассмотрением характеристических функций случайных величин.

Теорема 1. Пусть? - случайная величина с функцией распределения F=F(х) и - ее характеристическая функция.

Имеют место следующие свойства:

) равномерно непрерывна по;

) является действительнозначной функцией тогда и только тогда, когда распределение F симметрично


)если для некоторого n ? 1 , то при всех существуют производные и



)Если существует и является конечной, то

)Пусть для всех n ? 1 и


тогда при всех |t|

Следующая теорема показывает, что характеристическая функция однозначно определяет функцию распределения.

Теорема 2 (единственности). Пусть F и G - две функции распределения, имеющие одну и ту же характеристическую функцию, то есть для всех



Теорема говорит о том, что функция распределения F = F(х) однозначно восстанавливается по своей характеристической функции. Следующая теорема дает явное представление функции F через.

Теорема 3 (формула обобщения). Пусть F = F(х) - функция распределения и - ее характеристическая функция.

а) Для любых двух точек a, b (a < b), где функция F = F(х) непрерывна,


) Если то функция распределения F(х) имеет плотность f(x),



Теорема 4. Для того чтобы компоненты случайного вектора были независимы, необходимо и достаточно, чтобы его характеристическая функция была произведением характеристических функций компонент:


Теорема Бохнера-Хинчина. Пусть - непрерывная функция, Для того, чтобы была характеристической, необходимо и достаточно, чтобы она была неотрицательно-определенной, то есть для любых действительных t1, … , tn и любых комплексных чисел



Теорема 5. Пусть - характеристическая функция случайной величины.

а) Если для некоторого, то случайная величина является решетчатой с шагом, то есть


) Если для двух различных точек, где - иррациональное число, то случайная величина? является вырожденной:



где а - некоторая константа.

с) Если, то случайная величина? вырождена.


1.3 Центральная предельная теорема для независимых одинаково распределенных случайных величин


Пусть {} - последовательность независимых, одинаково распределенных случайных величин. Математическое ожидание M= a, дисперсия D= , S = , а Ф(х) - функция распределения нормального закона с параметрами (0,1). Введем еще последовательность случайных величин



Теорема. Если 0 <<, то при n P(< x) Ф(х) равномерно относительно х ().

В этом случае последовательность {} называется асимптотически нормальной.

Из того, что М= 1 и из теорем непрерывности вытекает, что наряду со слабой сходимостью, ФМ f() Mf() для любой непрерывной ограниченной f имеет место также сходимость М f() Mf() для любой непрерывной f, такой, что |f(x)| < c(1+|x|) при каком-нибудь.

Доказательство.

Равномерная сходимость здесь является следствием слабой сходимости и непрерывности Ф(х). Далее, без ограничения общности можно считать а = 0, так как иначе можно было бы рассмотреть последовательность {}, при этом последовательность {} не изменилась бы. Стало быть, для доказательства требуемой сходимости достаточно показать, что (t) e,когда а = 0. Имеем

(t) = , где =(t).


Так как существует М, то существует и справедливо разложение



Следовательно, при n

Теорема доказана.


1.4 Основные задачи математической статистики их краткая характеристика


Установление закономерностей, которым подчинены массовые случайные явления, основано на изучении статистических данных - результатах наблюдений. Первая задача математической статистики - указать способы сбора и группировки статистических сведений. Вторая задача математической статистики - разработать методы анализа статистических данных, в зависимости от целей исследования.

При решении любой задачи математической статистики располагают двумя источниками информации. Первый и наиболее определенный(явный) - это результат наблюдений (эксперимента) в виде выборки из некоторой генеральной совокупности скалярной или векторной случайной величины. При этом объем выборки n может быть фиксирован, а может и увеличиваться в ходе эксперимента (т. е. могут использоваться так называемые последовательные процедуры статистического анализа).

Второй источник - это вся априорная информация об интересующих свойствах изучаемого объекта, которая накоплена к текущему моменту. Формально объем априорной информации отражается в той исходной статистической модели, которую выбирают при решении задачи. Однако и о приближенном в обычном смысле определении вероятности события по результатам опытов говорить не приходится. Под приближенным определением какой-либо величины обычно подразумевают, что можно указать пределы погрешностей, из которых ошибка не выйдет. Частота же события случайна при любом числе опытов из-за случайности результатов отдельных опытов. Из-за случайности результатов отдельных опытов частота может значительно отклоняться от вероятности события. Поэтому, определяя неизвестную вероятность события как частоту этого события при большом числе опытов, не можем указать пределы погрешности и гарантировать, что ошибка не выйдет из этих пределов. Поэтому в математической статистике обычно говорят не о приближенных значениях неизвестных величин, а об их подходящих значениях, оценках.

Задача оценивания неизвестных параметров возникает в тех случаях, когда функция распределения генеральной совокупности известна с точностью до параметра. В этом случае необходимо найти такую статистику, выборочное значение которой для рассматриваемой реализации xn случайной выборки можно было бы считать приближенным значением параметра. Статистику, выборочное значение которой для любой реализации xn принимают за приближенное значение неизвестного параметра, называют его точечной оценкой или просто оценкой, а - значением точечной оценки. Точечная оценка должна удовлетворять вполне определенным требованиям для того, чтобы её выборочное значение соответствовало истинному значению параметра.

Возможным является и иной подход к решению рассматриваемой задачи: найти такие статистики и,чтобы с вероятностью? выполнялось неравенство:



В этом случае говорят об интервальной оценке для. Интервал



называют доверительным интервалом для с коэффициентом доверия?.

Оценив по результатам опытов ту или иную статистическую характеристику, возникает вопрос: насколько согласуется с опытными данными предположение (гипотеза) о том, что неизвестная характеристика имеет именно то значение, которое получено в результате её оценивания? Так возникает второй важный класс задач математической статистики - задачи проверки гипотез.

В некотором смысле задача проверки статистической гипотезы является обратной к задаче оценивания параметра. При оценивании параметра мы ничего не знаем о его истинном значении. При проверке статистической гипотезы из каких-то соображений предполагается известным его значение и необходимо по результатам эксперимента проверить данное предположение.

Во многих задачах математической статистики рассматриваются последовательности случайных величин, сходящиеся в том или ином смысле к некоторому пределу (случайной величине или константе), когда.

Таким образом, основными задачами математической статистики являются разработка методов нахождения оценок и исследования точности их приближения к оцениваемым характеристикам и разработка методов проверки гипотез.


5 Проверка статистических гипотез: основные понятия


Задача разработки рациональных методов проверки статистических гипотез - одна из основных задач математической статистики. Статистической гипотезой (или просто гипотезой) называют любое утверждение о виде или свойствах распределения наблюдаемых в эксперименте случайных величин.

Пусть имеется выборка, являющаяся реализацией случайной выборки из генеральной совокупности, плотность распределения которой зависит от неизвестного параметра.

Статистические гипотезы относительно неизвестного истинного значения параметра называют параметрическими гипотезами. При этом если - скаляр, то речь идет об однопараметрических гипотезах, а если вектор - то о многопараметрических гипотезах.

Статистическую гипотезу называют простой, если она имеет вид

где - некоторое заданное значение параметра.

Статистическую гипотезу называют сложной, если она имеет вид


где - некоторое множество значений параметра, состоящее более чем из одного элемента.

В случае проверки двух простых статистических гипотез вида

где - два заданных (различных) значения параметра, первую гипотезу обычно называют основной, а вторую - альтернативной, или конкурирующей гипотезой.

Критерием, или статистическим критерием, проверки гипотез называют правило, по которому по данным выборки принимается решение о справедливости либо первой, либо второй гипотезы.

Критерий задают с помощью критического множества, являющегося подмножеством выборочного пространства случайной выборки. Решение принимают следующим образом:

)если выборка принадлежит критическому множеству, то отвергают основную гипотезу и принимают альтернативную гипотезу;

)если выборка не принадлежит критическому множеству (т. е. принадлежит дополнению множества до выборочного пространства), то отвергают альтернативную гипотезу и принимают основную гипотезу.

При использовании любого критерия возможны ошибки следующих видов:

1)принять гипотезу, когда верна - ошибка первого рода;

)принять гипотезу, когда верна - ошибка второго рода.

Вероятности совершения ошибок первого и второго рода обозначают и:

где - вероятность события при условии, что справедлива гипотеза Указанные вероятности вычисляют с использованием функции плотности распределения случайной выборки:

Вероятность совершения ошибки первого рода также называют уровнем значимости критерия.

Величину, равную вероятности отвергнуть основную гипотезу, когда она верна, называют мощностью критерия.


1.6 Критерий независимости


Имеется выборка ((XY), …, (XY)) из двумерного распределения

L с неизвестной функцией распределения, для которой требуется проверить гипотезу H: , где некоторые одномерные функции распределения.

Простой критерий согласия для гипотезы H можно построить, основываясь на методике. Эту методику применяют для дискретных моделей с конечным числом исходов, поэтому условимся считать, что случайная величина принимает конечное число s некоторых значений, которые будем обозначать буквами, а вторая компонента - k значений. Если исходная модель имеет другую структуру, то предварительно группируют возможные значения случайных величин отдельно по первой и второй компонентам. В этом случае множество разбивается на s интервалов, множество значение - на k интервалов, а само множество значений - на N=sk прямоугольников.

Обозначим через число наблюдений пары (число элементов выборки, принадлежащих прямоугольнику, если данные группируются), так что. Результаты наблюдений удобно расположить в виде таблицы сопряженности двух знаков(табл. 1.1) . В приложениях и обычно означают два признака, по которым производится классификация результатов наблюдения.

Пусть Р, i=1,…,s, j=1,…,k. Тогда гипотеза независимости означает, что существует s+k постоянных таких, что и, т.е.


Таблица 1.1

Сумма. . .. . .. . . . . .. . .. . . . . . . . . . . . . . .Сумма. . .n

Таким образом, гипотеза H сводится к утверждению, что частоты (число их равно N = sk) распределены по полиномиальному закону с вероятностями исходов, имеющими указанную специфическую структуру (вектор вероятностей исходов р определяется значениями r=s+k-2 неизвестных параметров.

Для проверки этой гипотезы, найдем оценки максимального правдоподобия для определяющих рассматриваемую схему неизвестных параметров. Если справедлива нулевая гипотеза, то функция правдоподобия имеет вид L(p)= где множитель с от неизвестных параметров не зависит. Отсюда по методу неопределенных множителей Лагранжа получаем, что искомые оценки имеют вид

Следовательно, статистика

L() при, поскольку число степеней свободы в предельном распределении равно N-1-r=sk-1-(s+k-2)=(s-1)(k-1).

Итак, при достаточно больших n можно использовать следующее правило проверки гипотезы: гипотезу Н отвергают тогда и только тогда, когда вычисленное по фактическим данным значение t статистики удовлетворяет неравенству

Этот критерий имеет асимптотически (при) заданный уровень значимости и называется критерием независимости.

2. ПРАКТИЧЕСКАЯ ЧАСТЬ


1 Решения задач о типах сходимости


1. Доказать, что из сходимости почти наверное следует сходимость по вероятности. Приведите контрольный пример, показывающий, что обратное утверждение неверно.

Решение. Пусть последовательность случайных величин сходится к случайной величине x почти наверное. Значит, для любого? > 0

Так как, то

и из сходимости xn к x почти наверное вытекает, что xn сходится к x по вероятности, так как в этом случае

Но обратное утверждение не верно. Пусть - последовательность независимых случайных величин, имеющих одну и ту же функцию распределения F(x), равную нулю при х? 0 и равную при х > 0. Рассмотрим последовательность


Эта последовательность сходится к нулю по вероятности, так как

стремится к нулю при любом фиксированном? и. Однако сходимость к нулю почти наверное иметь место не будет. Действительно

стремится к единице, то есть с вероятностью 1 при любых и n в последовательности найдутся реализации, превосходящие?.

Отметим, что при наличии некоторых дополнительных условий, накладываемых на величины xn, сходимость по вероятности влечет сходимость почти наверное.

Пусть xn - монотонная последовательность. Доказать, что в этом случае сходимость xn к x по вероятности влечет за собой сходимость xn к x с вероятностью 1.

Решение. Пусть xn - монотонно убывающая последовательность, то есть. Для упрощения наших рассуждений будем считать, что x º 0, xn ³ 0 при всех n. Пусть xn сходится к x по вероятности, однако сходимость почти наверное не имеет место. Тогда существует? > 0, такое, что при всех n


Но и сказанное означает, что при всех n

что противоречит сходимости xn к x по вероятности. Таким образом, для монотонной последовательности xn, сходящийся к x по вероятности, имеет место и сходимость с вероятностью 1 (почти наверное).

Пусть последовательность xn сходится к x по вероятности. Доказать, что из этой последовательности можно выделить последовательность, сходящуюся к x с вероятностью 1 при.

Решение. Пусть - некоторая последовательность положительных чисел, причем, и - такие положительные числа, что ряд. Построим последовательность индексов n1

Тогда ряд


Так как ряд сходится, то при любом? > 0 остаток ряда стремится к нулю. Но тогда стремится к нулю и



Доказать, что из сходимости в среднем какого либо положительного порядка следует сходимость по вероятности. Приведите пример, показывающий, что обратное утверждение неверно.

Решение. Пусть последовательность xn сходится к величине x в среднем порядка р > 0, то есть



Воспользуемся обобщенным неравенством Чебышева: для произвольных? > 0 и р > 0



Устремив и учитывая, что, получим, что



то есть xn сходится к x по вероятности.

Однако сходимость по вероятности не влечет за собой сходимость в среднем порядка р > 0. Это показывает следующий пример. Рассмотрим вероятностное пространство áW, F , Rñ, где F = B - борелевская s-алгебра, R - мера Лебега.

Определим последовательность случайных величин следующим образом:

Последовательность xn сходится к 0 по вероятности, так как



но при любом р > 0



то есть сходимость в среднем иметь не будет.

Пусть, при чем для всех n . Доказать, что в этом случае xn сходится к x в среднеквадратическом.

Решение. Заметим, то и. Получим оценку для. Рассмотрим случайную величину. Пусть? - произвольное положительное число. Тогда при и при.



Если, то и. Следовательно, . А поскольку? сколь угодно мало и, то при, то есть в среднеквадратическом.

Доказать, что если xn сходится к x по вероятности, то имеет место слабая сходимость. Приведите контрольный пример, показывающий, что обратное утверждение неверно.

Решение. Докажем, что если, то в каждой точке х, являющейся точкой непрерывности (это необходимое и достаточное условие слабой сходимости), - функция распределения величины xn, а - величины x.

Пусть х - точка непрерывности функции F. Если, то справедливо по крайней мере одно из неравенств или. Тогда



Аналогично, при справедливо хотя бы одно из неравенств или и






Если, то для сколь угодно малого? > 0 существует такое N, что при всех п > N



С другой стороны, если х - точка непрерывности то можно найти такое? > 0, что для сколь угодно малого



Значит, для сколь угодно малых? и существует такое N, что при п >N




или, что то же самое,



Это означает, что во всех точках непрерывности имеет место сходимость и. Следовательно, из сходимости по вероятности вытекает слабая сходимость.

Обратное утверждение, вообще говоря, не имеет места. Чтобы убедиться в этом, возьмем последовательность случайных величин, не равных с вероятностью 1 постоянным и имеющих одну и ту же функцию распределения F(x). Считаем, что при всех п величины и независимы. Очевидно, слабая сходимость имеет место, так как у всех членов последовательности одна и та же функция распределения. Рассмотрим:

|Из независимости и одинаковой распределенности величин, следует, что




Выберем среди всех функций распределений невырожденных случайных величин такую F(x), что будет отлично от нуля при всех достаточно малых?. Тогда не стремится к нулю при неограниченном росте п и сходимость по вероятности иметь место не будет.

7. Пусть имеет место слабая сходимость, где с вероятностью 1 есть постоянная. Доказать, что в этом случае будет сходиться к по вероятности.

Решение. Пусть с вероятностью 1 равно а. Тогда слабая сходимость означает сходимость при любых. Так как, то при и при. То есть при и при. Отсюда следует, что для любого? > 0 вероятности



стремятся к нулю при. Это значит, что

стремится к нулю при, то есть сходиться к по вероятности.

2.2 Решение задач на ЦПТ


Значение гамма-функции Г(x) при x= вычисляется методом Монте-Карло. Найдем минимальное число испытаний необходимых для того, что бы с вероятностью 0,95 можно было ожидать, что относительная погрешность вычислений будет меньше одного процента.

Для с точностью до имеем



Известно, что



Сделав в (1) замену, приходим к интегралу по конечному промежутку:



У нас, поэтому


Как видно, представимо в виде, где, а распределена равномерно на. Пусть произведено статистических испытаний. Тогда статистическим аналогом является величина



где, - независимые случайные величины с равномерным на распределением. При этом



Из ЦПТ следует, что асимптотически нормальна с параметрами.






Значит, минимальное количество испытаний, обеспечивающее с вероятностью относительную погрешность вычисления не более равно.


Рассматривается последовательность из 2000 независимых одинаково распределенных случайных величин с математическим ожиданием, равным 4, и дисперсией, равной 1,8. Среднее арифметическое этих величин есть случайная величина. Определить вероятность того, что случайная величина примет значение в интервале (3,94; 4,12).

Пусть, …,…- последовательность независимых случайных величин, имеющих одинаковое распределение с M=a=4 и D==1,8. Тогда к последовательности {} применима ЦПТ. Случайная величина

Вероятность того, что примет значение в интервале ():



При n=2000, 3,94 и 4,12 получим



3 Проверка гипотез критерием независимости


В результате проведенного исследования было установлено, что у 782 светлоглазых отцов сыновья тоже имеют светлые глаза, а 89 светлоглазых отцов сыновья - темноглазые. У 50 темноглазых отцов сыновья также темноглазые, а у 79 темноглазых отцов сыновья - светлоглазые. Имеется ли зависимость между цветом глаз отцов и цветом глаз их сыновей? Уровень доверия принять равным 0,99.


Таблица 2.1

ДетиОтцыСуммаСветлоглазыеТемноглазыеСветлоглазые78279861Темноглазые8950139Сумма8711291000

H: нет зависимости между цветом глаз детей и отцов.

H: есть зависимость между цветом глаз детей и отцов.



s=k=2 =90,6052 с 1 ступеней свободы

Вычисление сделаны в программе Mathematica 6.

Поскольку > , то гипотезу H, про отсутствия зависимости между цветом глаз отцов и детей, при уровне значимости, следует отклонить и принять альтернативную гипотезу H.


Утверждается, что результат действия лекарства зависит от способа применения. Проверьте это утверждение по данным, представленным в табл. 2.2 Уровень доверия принять равным 0,95.


Таблица 2.2

РезультатСпособ примененияАВСНеблагоприятный111716Благоприятный202319

Решение.

Для решения данной задачи воспользуемся таблицей сопряженности двух признаков.


Таблица 2.3

РезультатСпособ примененияСуммаАВСНеблагоприятный11171644Благоприятный20231962Сумма314035106

H: результат действия лекарств не зависит от способа применения

H: результат действия лекарств зависит от способа применения

Статистика вычисляется за следующей формулой



s=2, k=3, =0,734626 c 2 ступенями свободы.


Вычисление сделаны в программе Mathematica 6

По таблицам распределения находим, что.

Поскольку < , то гипотезу H, про отсутствия зависимости действия лекарств от способа применения, при уровне значимости, следует принять.


Заключение


В данной работе приведены теоретические выкладки из раздела «Критерий независимости », а также «Предельные теоремы теории вероятностей», курсу «Теория вероятностей и математическая статистика». В ходе выполнения работы на практике были проверены критерий независимости; также для заданных последовательностей независимых случайных величин было проверено выполнение центральной предельной теоремы.

Данная работа помогла усовершенствовать мои знания с данных разделов теории вероятностей, работы с литературными источниками, твердо владеть техникой проверки критерия независимости.

вероятностная статистическая гипотеза теорема

Перечень ссылок


1. Сборник задач с теории вероятности с решением. Уч. пособие / Под ред. В.В. Семенца. - Харьков: ХТУРЕ, 2000. - 320с.

Гихман И.И., Скороход А.В., Ядренко М.И. Теория вероятностей и математическая статистика. - К.: Вища шк., 1979. - 408 с.

Ивченко Г.И., Медведев Ю.И., Математическая статистика: Учеб. пособие для втузов. - М.: Высш. шк., 1984. - 248с., .

Математическая статистика: Учеб. для вузов/ В.Б. Горяинов, И.В. Павлов, Г.М. Цветкова и др.; Под ред. В.С. Зарубина, А.П. Крищенко. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. - 424с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

← Вернуться

×
Вступай в сообщество «passport13.com»!
ВКонтакте:
Я уже подписан на сообщество «passport13.com»