Атомы. Там, внизу, еще много возможностей Фотографии атомов

Подписаться
Вступай в сообщество «passport13.com»!
ВКонтакте:

Атом водорода, запечатлев электронные облака. И хотя современные физики с помощью ускорителей могут определять даже форму протона, атом водорода, по-видимому, так и останется самым мелким объектом, изображение которого имеет смысл называть фотографией. «Лента.ру» представляет обзор современных методов фотографирования микромира.

Строго говоря, обычной фотографии в наши дни почти не осталось. Изображения, которые мы по привычке называем фотографиями и можем найти, к примеру, в любом фоторепортаже «Ленты.ру», вообще-то, являются компьютерными моделями. Светочувствительная матрица в специальном приборе (по традиции его продолжают называть «фотоаппаратом») определяет пространственное распределение интенсивности света в нескольких разных спектральных диапазонах, управляющая электроника сохраняет эти данные в цифровом виде, а потом другая электронная схема на основе этих данных отдает команду транзисторам в жидкокристаллическом дисплее. Пленка, бумага, специальные растворы для их обработки - все это стало экзотикой. А если мы вспомним буквальное значение слова, то фотография - это «светопись». Так что говорить о том, что ученым удалось сфотографировать атом, можно лишь с изрядной долей условности.

Больше половины всех астрономических снимков уже давно делают инфракрасные, ультрафиолетовые и рентгеновские телескопы. Электронные микроскопы облучают не светом, а пучком электронов, а атомно-силовые и вовсе сканируют рельеф образца иглой. Есть рентгеновские микроскопы и магнитно-резонансные томографы. Все эти приборы выдают нам точные изображения различных объектов, и несмотря на то что о «светописи» говорить здесь, разумеется, не приходится, мы все же позволим себе именовать такие изображения фотографиями.

Эксперименты физиков по определению формы протона или распределения кварков внутри частиц останутся за кадром; наш рассказ будет ограничен масштабами атомов.

Оптика не стареет

Как выяснилось во второй половине XX века, оптическим микроскопам еще есть куда развиваться. Решающим моментом в биологических и медицинских исследованиях стало появление флуоресцентных красителей и методов, позволяющих избирательно помечать определенные вещества. Это не было «всего лишь новой краской», это был настоящий переворот.

Вопреки расхожему заблуждению, флуоресценция - это вовсе не свечение в темноте (последнее называется люминесценцией). Это явление поглощения квантов определенной энергии (скажем, синего света) с последующим излучением других квантов меньшей энергии и, соответственно, иного света (при поглощении синего испускаться будут зеленые). Если поставить светофильтр, который пропускает только излучаемые красителем кванты и задерживает свет, вызывающий флуоресценцию, можно увидеть темный фон с яркими пятнами красителей, а красители, в свою очередь, могут расцвечивать образец чрезвычайно избирательно.

Например, можно покрасить цитоскелет нервной клетки красным, синапсы выделить зеленым, а ядро - голубым. Можно сделать флуоресцентную метку, которая позволит обнаружить белковые рецепторы на мембране или синтезируемые клеткой в определенных условиях молекулы. Метод иммуногистохимического окрашивания совершил революцию в биологической науке. А когда генные инженеры научились делать трансгенных животных с флуоресцентными белками, этот метод пережил второе рождение: реальностью стали, например, мыши с окрашенными в разные цвета нейронами.

Кроме того, инженеры придумали (и отработали на практике) метод так называемой конфокальной микроскопии. Суть его заключается в том, что микроскоп фокусируется на очень тонкий слой, а специальная диафрагма отсекает создаваемую объектами вне этого слоя засветку. Такой микроскоп может последовательно сканировать образец сверху вниз и получать стопку снимков, которая является готовой основой для трехмерной модели.

Использование лазеров и сложных оптических систем управления лучом позволило решить проблему выгорания красителей и высыхания нежных биологических образцов под ярким светом: луч лазера сканирует образец только тогда, когда это необходимо для съемки. А чтобы не тратить время и силы на осмотр большого препарата через окуляр с узким полем зрения, инженеры предложили автоматическую систему сканирования: на предметный столик современного микроскопа можно положить стекло с образцом, и прибор самостоятельно отснимет масштабную панораму всего образца. При этом в нужных местах он будет наводить на резкость, а затем склеит множество кадров воедино.

В некоторые микроскопы можно посадить живых мышей, крыс или хотя бы мелких беспозвоночных животных. Другие дают небольшое увеличение, зато совмещены с рентгеновским аппаратом. Многие для устранения помех от вибраций монтируются на специальных столах массой в несколько тонн внутри помещений с тщательно контролируемым микроклиматом. Стоимость подобных систем превышает стоимость иных электронных микроскопов, а конкурсы на самый красивый кадр давно стали традицией. Кроме того, продолжается и совершенствование оптики: от поиска лучших сортов стекла и подбора оптимальных комбинаций линз инженеры перешли к способам фокусировки света.

Мы специально перечислили ряд технических подробностей для того, чтобы показать: прогресс в области биологических исследований давно связан с прогрессом в других областях. Если бы не существовало компьютеров, способных автоматически сосчитать число окрашенных клеток на нескольких сотнях фотографий, толку от супермикроскопов было бы немного. А без флуоресцентных красителей все миллионы клеток были бы неотличимы друг от друга, так что проследить за формированием новых или гибелью старых было бы практически невозможно.

По сути, первый микроскоп представлял собой струбцину с закрепленной на ней сферической линзой. Аналогом такого микроскопа может быть простая игральная карта с проделанным в ней отверстием и каплей воды. По некоторым данным подобные устройства применяли золотодобытчики на Колыме уже в прошлом столетии.

За дифракционным пределом

У оптических микроскопов есть принципиальный недостаток. Дело в том, что по форме световых волн невозможно восстановить форму тех предметов, которые оказались намного меньше длины волны: с тем же успехом можно пытаться исследовать тонкую текстуру материала рукой в толстой перчатке для сварочных работ.

Ограничения, создаваемые дифракцией, отчасти удалось преодолеть, причем без нарушения законов физики. Поднырнуть под дифракционный барьер оптическим микроскопам помогают два обстоятельства: то, что при флуоресценции кванты излучаются отдельными молекулами красителя (которые могут довольно далеко отстоять друг от друга), и то, что за счет наложения световых волн можно получить яркое пятно с диаметром, меньшим, чем длина волны.

При наложении друг на друга световые волны способны взаимно друг друга погасить, поэтому параметры освещения образца так, чтобы в яркую область попадал по возможности меньший участок. В сочетании с математическими алгоритмами, которые позволяют, например, убрать двоение изображения, такое направленное освещение дает резкое повышение качества съемки. Становится возможным, к примеру, исследовать в оптический микроскоп внутриклеточные структуры и даже (комбинируя описанный метод с конфокальной микроскопией) получать их трехмерные изображения.

Электронный микроскоп до электронных приборов

Для того чтобы открыть атомы и молекулы, ученым не пришлось их рассматривать - молекулярная теория не нуждалась в том, чтобы видеть объект. А вот микробиология стала возможна только после изобретения микроскопа. Поэтому первое время микроскопы ассоциировались именно с медициной и биологией: физики и химики, изучавшие существенно меньшие объекты, обходились другими средствами. Когда же и им захотелось посмотреть на микромир, дифракционные ограничения стали серьезной проблемой, тем более что описанные выше методы флуоресцентной микроскопии были еще неизвестны. Да и толку от повышения разрешающей способности с 500 до 100 нанометров немного, если объект, который надо рассмотреть, еще меньше!

Зная о том, что электроны могут себя вести и как волна, и как частица, физики из Германии в 1926 году создали электронную линзу. Идея, лежащая в ее основе, была очень простой и понятной любому школьнику: раз электромагнитное поле отклоняет электроны, то с его помощью можно поменять форму пучка этих частиц, растащив их в разные стороны, или, напротив, уменьшить диаметр пучка. Спустя пять лет, в 1931 году Эрнст Руска и Макс Кнолл построили первый в мире электронный микроскоп. В приборе образец сначала просвечивался пучком электронов, а потом электронная линза расширяла прошедший насквозь пучок перед тем, как тот падал на специальный люминесцентный экран. Первый микроскоп давал увеличение всего в 400 раз, но замена света на электроны открыла дорогу к фотографированию с увеличением в сотни тысяч раз: конструкторам пришлось всего лишь преодолеть несколько препятствий технического характера.

Электронный микроскоп позволил рассмотреть устройство клеток в недосягаемом ранее качестве. Но по этому снимку нельзя понять возраст клеток и наличие в них тех или иных белков, а эта информация очень нужна ученым.

Сейчас электронные микроскопы позволяют фотографировать вирусы крупным планом. Существуют разные модификации приборов, позволяющие не только просвечивать тонкие срезы, но и рассматривать их в «отраженном свете» (в отраженных электронах, конечно). Мы не будем подробно рассказывать про все варианты микроскопов, но заметим, что недавно исследователи - они научились восстанавливать изображение по дифракционной картине.

Потрогать, а не рассмотреть

Еще одна революция произошла за счет дальнейшего отхода от принципа «осветить и посмотреть». Атомный силовой микроскоп, равно как и сканирующий туннельный микроскоп, уже ничем на поверхность образцов не светит. Вместо этого по поверхности перемещается особо тонкая игла, которая буквально подпрыгивает даже на неровностях размером с отдельный атом.

Не вдаваясь в детали всех подобных методов, заметим главное: иглу туннельного микроскопа можно не только перемещать вдоль поверхности, но и использовать для перестановки атомов с места на место. Именно таким образом ученые создают надписи, рисунки и даже мультфильмы, в которых нарисованный мальчик играет с атомом. Настоящим атомом ксенона, перетаскиваемым иглой сканирующего туннельного микроскопа.

Туннельным микроскоп называют потому, что он использует эффект протекающего через иглу туннельного тока: электроны проходят через зазор между иглой и поверхностью за счет предсказанного квантовой механикой туннельного эффекта. Для работы такого прибора нужен вакуум.

Намного менее требователен к окружающим условиям атомный силовой микроскоп (АСМ) - он может (с рядом ограничений) работать без откачки воздуха. В определенном смысле АСМ является нанотехнологичным наследником патефона. Игла, закрепленная на тонком и гибком кронштейне-кантилевере (cantilever и есть «кронштейн»), движется вдоль поверхности без подачи на нее напряжения и следует рельефу образца так же, как игла патефона следует вдоль бороздок грампластинки. Изгиб кантилевера заставляет отклоняться закрепленное на нем зеркало, зеркало отклоняет лазерный луч, и это позволяет очень точно определять форму исследуемого образца. Главное только иметь достаточно точную систему перемещения иглы, а также запас игл, которые должны быть идеально острыми. Радиус закругления у кончиков таких игл может не превышать одного нанометра.

АСМ позволяет видеть отдельные атомы и молекулы, однако, как и туннельный микроскоп, не позволяет заглянуть под поверхность образца. Иными словами, ученым приходится выбирать между возможностью видеть атомы и возможностью изучать весь объект целиком. Впрочем, и для оптических микроскопов внутренности изучаемых образцов не всегда доступны, ведь минералы или металлы обычно свет пропускают плохо. Кроме того, с фотографированием атомов все равно возникают сложности - эти объекты предстают простыми шариками, форма электронных облаков на таких снимках не видна.

Синхротронное излучение, возникающее при торможении разогнанных ускорителями заряженных частиц, позволяет изучать окаменевшие останки доисторических животных. Вращая образец под рентгеновскими лучами, мы можем получать трехмерные томограммы - именно так был найден, например, мозг внутри черепа рыб, вымерших 300 миллионов лет назад. Можно обойтись и без вращения, если регистрацию прошедшего излучения фиксацией рассеянных за счет дифракции рентгеновских лучей.

И это еще не все возможности, которые открывает рентгеновское излучение. При облучении им многие материалы флуоресцируют, причем по характеру флуоресценции можно определить химический состав вещества: таким способом ученые окраску древних артефактов, стертые в Средние века труды Архимеда или окраску перьев давно вымерших птиц.

Позируют атомы

На фоне всех тех возможностей, которые предоставляют рентгеновские или оптико-флуоресцентные методы, новый способ фотографирования отдельных атомов уже кажется не таким уж большим прорывом в науке. Суть метода, который позволил получить представленные на этой неделе изображения, такова: с ионизированных атомов срывают электроны и направляют их на специальный детектор. Каждый акт ионизации срывает электрон с определенного положения и дает одну точку на «фотографии». Накопив несколько тысяч таких точек, ученые сформировали картинку, отображающую наиболее вероятные места обнаружения электрона вокруг ядра атома, а это по определению и есть электронное облако.

В заключение скажем, что возможность видеть отдельные атомы с их электронными облаками - это скорее вишенка на торте современной микроскопии. Ученым было важно исследовать структуру материалов, изучать клетки и кристаллы, а обусловленное этим развитие технологий дало возможность дойти до атома водорода. Все, что меньше, - уже сфера интересов специалистов по физике элементарных частиц. А биологам, материаловедам и геологам еще есть куда совершенствовать микроскопы даже с довольно скромным на фоне атомов увеличением. Специалистам по нейрофизиологии, к примеру, давно хочется иметь прибор, способный видеть отдельные клетки внутри живого мозга, а создатели марсоходов продали бы душу за электронный микроскоп, который влезал бы на борт космического аппарата и мог бы работать на Марсе.

Когда-нибудь видели атомы? Мы с вами из них состоим, поэтому фактически да. Но видели ли вы когда-нибудь один единственный атом? Недавно удивительная фотография всего одного атома, захваченная электрическими полями, победила в престижном конкурсе научной фотографии, удостоивших высшей награды. На конкурс фото попало под вполне логичным названием «Single Atom in Ion Trap» (Один атом в ионной ловушке), а его автором является Дэвид Надлингер из Оксфордского университета.

Британский Научно-исследовательский совет инженерных и физических наук (EPSRC) объявил победителей своего национального конкурса научной фотографии, среди которых главного приза удостоилось фото одного атома

На фото атом представлен в виде крошечного пятнышка света между двумя металлическими электродами, расположенными на расстоянии около 2 мм друг от друга.

Подпись к фото:

"В центре фотографии видна небольшая яркая точка - один положительно заряженный атом стронция. Он удерживается почти неподвижно электрическими полями, исходящими от окружающих его металлических электродов. При освещении лазером сине-фиолетового цвета атом достаточно быстро поглощает и повторно излучает светлые частицы, благодаря чему обычная камера могла сфотографировать его с длинной выдержкой."

"Фото было сделано через окно камеры сверхвысокого вакуума, в которой находится ловушка. Охлажденные лазером атомные ионы представляют собой отличную базу для изучения и использования уникальных свойств квантовой физики. Они используются для создания чрезвычайно точных часов или, как в этом случае, в качестве частиц для построения квантовых компьютеров будущего, которые смогут решать задачи, затмевающие сегодняшние даже самые мощнейшие суперкомпьютеры."

Если вам всё-таки не удалось рассмотреть атом, то вот он

"Идея того, что можно увидеть один атом невооружённым глазом поразила меня до глубины души, являясь своеобразным мостом между крошечным квантовым миром и нашей макроскопической реальностью", - сказал Дэвид Надлингер.

1. Но начнем мы совсем с другой стороны. Прежде чем отправиться в путешествие к глубинам материи, давайте обратим свой взор вверх.

Например, известно, что до Луны в среднем почти 400 тысяч километров, до Солнца - 150 миллионов, до Плутона (который уже не виден без телескопа) - 6 миллиардов, до ближайшей звезды Проксимы Центавра - 40 триллионов, до ближайшей крупной галактики туманности Андромеды - 25 квинтиллионов, и наконец до окраин обозримой Вселенной - 130 секстиллионов.

Впечатляюще, конечно, но разница между всеми этими «квадри-», «квинти-» и «сексти-» не кажется столь уж огромной, хотя они и различаются между собой в тысячу раз. Совсем другое дело микромир. Разве в нем может быть скрыто так уж много интересного, ведь ему просто негде там поместиться. Так говорит нам здравый смысл и ошибается .

2. Если на одном конце логарифмической шкалы отложить самое маленькое известное расстояние во Вселенной, а на другом - самое большое, то посередине окажется… песчинка. Её диаметр - 0.1 мм.

3. Если положить в ряд 400 млрд песчинок, их ряд обогнёт весь земной шар по экватору. А если собрать эти же 400 млрд в мешок, весить он будет около тонны.

4. Толщина человеческого волоса - 50–70 микронам, то есть их 15–20 штук на миллиметр. Для того чтобы выложить ими расстояние до Луны, потребуется 8 триллионов волос (если складывать их не по длине, а по ширине, конечно). Поскольку на голове у одного человека их около 100 тысяч, то если собрать волосы у всего населения России, до Луны хватит с лихвой и даже еще останется.

5. Размер бактерий - от 0.5 до 5 микрон. Если увеличить среднюю бактерию до такого размера, что она удобно ляжет нам в ладонь (в 100 тысяч раз), толщина волоса станет равной 5 метрам.

6. Кстати, внутри человеческого тела обитает целый квадриллион бактерий, а их общий вес составляет 2 килограмма. Их, собственно, даже больше, чем клеток самого тела. Так что вполне можно сказать, что человек - это просто такой организм, состоящий из бактерий и вирусов с небольшими вкраплениями чего-то еще.

7. Размеры вирусов различаются еще больше, чем бактерий, - чуть ли не в 100 тысяч раз. Если бы дело обстояло так с людьми, то они были бы ростом от 1 сантиметра до 1 километра, и их социальное взаимодействие стало бы любопытным зрелищем.

8. Средняя длина наиболее распространенных разновидностей вирусов - 100 нанометров или 10^(-7) степени метра. Если мы снова выполним операцию приближения таким образом, чтобы вирус стал размером с ладонь, то длина бактерии будет 1 метр, а толщина волоса - 50 метров.

9. Длина волны видимого света - 400–750 нанометров, и увидеть объекты меньше этой величины попросту невозможно. Попытавшись осветить такоей объект, волна просто обогнет его и не отразится.

10. Иногда задают вопрос, как выглядит атом или какого он цвета. На самом деле, атом не выглядит никак. Просто вообще никак. И не потому, что у нас недостаточно хорошие микроскопы, а потому что размеры атома меньше расстояния, для которого существует само понятие «видимости»…

11. Вдоль окружности земного шара можно плотно разместить 400 триллионов вирусов. Много. Такое расстояние в километрах свет проходит за 40 лет. Но если собрать их всех вместе, то они легко поместятся на кончике пальца.

12. Примерный размер молекулы воды - 3 на 10^(-10) метра. В стакане воды таких молекул 10 септиллионов - примерно столько миллиметров от нас до Галактики Андромеды. А в кубическом сантиметре воздуха молекул 30 квинтиллионов (в основном, азота и кислорода).

13. Диаметр атома углерода (основы всей жизни на Земле) - 3.5 на 10^(-10) метра, то есть даже чуть больше, чем молекулы воды. Атом водорода в 10 раз меньше - 3 на 10^(-11) метра. Это, конечно, мало. Но насколько мало? Поражающий всякое воображение факт состоит в том, что мельчайшая, едва различимая крупинка соли состоит из 1 квинтиллиона атомов.

Давайте обратимся к нашему стандартному масштабу и приблизим атом водорода так, чтобы он удобно лег в руку. Вирусы тогда будут 300-метрового размера, бактерии 3-километрового, а толщина волоса станет равна 150 километрам, и даже в лежащем состоянии он выйдет за границы атмосферы (а в длину может достать и до Луны).

14. Так называемый «классический» диаметр электрона - 5.5 фемтометров или 5.5 на 10^(-15) метра. Размеры протона и нейтрона еще меньше и составляют около 1.5 фемтометров. Протонов в метре примерно столько же, сколько муравьев на планете Земля. Используем уже привычное нам увеличение. Протон удобно лежит у нас в ладони, - и тогда размер среднего вируса окажется равным 7 000 километрам (почти как вся Россия с запада на восток, между прочим), а толщина волоса в 2 раза превысит размеры Солнца.

15. О размерах сложно сказать что-то определенное. Предполагается, что они находятся где-то в пределах 10^(-19) - 10^(-18) метра. Самый маленький - истинный кварк - «диаметром» (давайте для напоминания о вышесказанном будем писать это слово в кавычках) 10^(-22) метра.

16. Есть еще такая штука как нейтрино. Посмотрите на свою ладонь. Через нее ежесекундно пролетает триллион нейтрино, испущенных Солнцем. И можете не прятать руку за спину. Нейтрино с легкостью пройдут и сквозь ваше тело, и сквозь стену, и сквозь всю нашу планету, и даже сквозь слой свинца толщиной в 1 световой год. «Диаметр» нейтрино равен 10^(-24) метра - эта частица в 100 раз меньше истинного кварка, или в миллиард раз меньше протона, или в 10 септиллионов раз меньше тираннозавра. Почти во столько же раз сам тираннозавр меньше всей обозримой Вселенной. Если увеличить нейтрино так, чтобы он был размером с апельсин, то даже протон будет в 10 раз больше Земли.

17. А сейчас я искренне надеюсь, что вас должна поразить одна из двух нижеследующих вещей. Первая - мы можем продвинуться еще дальше (и даже сделать какие-то осмысленные предположения о том, что там будет). Вторая - но при этом двигаться вглубь материи бесконечно все-таки нельзя, и вскоре мы уткнемся в тупик. Вот только для достижения этих самых «тупиковых» размеров нам придется опуститься еще на 11 порядков, если считать от нейтрино. То есть эти размеры меньше нейтрино в 100 миллиардов раз. Во столько же раз песчинка меньше всей нашей планеты, кстати.

18. Итак, на размерах 10^(-35) метра нас ждет такое замечательное понятие, как планковская длина, - минимальное расстояние из возможных в реальном мире (насколько это принято считать в современной науке).

19. Еще здесь обитают квантовые струны - объекты весьма примечательные с любой точки зрения (например, они одномерны, - у них нет толщины), но для нашей темы важно, что их длина тоже находится в пределах 10^(-35) метра. Давайте проделаем наш стандартный «увеличительный» эксперимент в последний раз. Квантовая струна становится удобного размера, и мы держим ее в руке как карандаш. При этом нейтрино будет в 7 раз больше Солнца, а атом водорода в 300 раз превысит размеры Млечного Пути.

20. Наконец мы подошли к самой структуре мироздания - масштабу, на котором пространство становится похожим на время, время на пространство, и происходят разные другие причудливые штуки. Дальше уже ничего нет (наверное)…

В эволюции человека нет «недостающего звена»

Термин «недостающее звено» вышел из обращения в научных кругах, так как связан с ошибочным предположением о том, что эволюционный процесс линеен и идёт последовательно, «по цепочке». Вместо этого биологи пользуются термином «последний общий предок».

Интересные факты о Солнечной системе

Как известно, все материальное во Вселенной состоит из атомов. Атом – это мельчайшая единица материи, которая несет в себе ее свойства. В свою очередь, структура атома складывается из волшебного триединства микрочастиц: протонов, нейтронов и электронов.

При этом каждая из микрочастиц универсальна. То есть, не найти на свете двух разных протонов, нейтронов или электронов. Все они абсолютно друг на друга похожи. И свойства атома будут зависеть только от количественного состава этих микрочастиц в общем строении атома.

Например, структура атома водорода состоит из одного протона и одного электрона. Следующий по сложности, атом гелия состоит из двух протонов, двух нейтронов и двух электронов. Атом лития — из трех протонов, четырех нейтронов и трех электронов и т. д.

Структура атомов (слева направо): водорода, гелия, лития

Атомы соединяются в молекулы, а молекулы — в вещества, минералы и организмы. Молекула ДНК, являющаяся основой всего живого – структура, собранная из тех же трех волшебных кирпичиков мироздания, что и камень, лежащий на дороге. Хотя эта структура и намного более сложная.

Еще более удивительные факты открываются тогда, когда мы пытаемся поближе рассмотреть пропорции и строение атомной системы. Известно, что атом состоит из ядра и электронов, двигающихся вокруг него по траектории, описывающей сферу. То есть это даже нельзя назвать движением в обычном понимании этого слова. Электрон скорее находится везде и сразу в пределах этой сферы, создавая вокруг ядра электронное облако и формируя электромагнитное поле.

Схематические изображения строения атома

Ядро атома состоит из протонов и нейтронов, и в нем сосредоточена почти вся масса системы. Но при этом, само ядро настолько мало, что если увеличить его радиус до масштаба в 1 см, то радиус всей структуры атома достигнет сотни метров. Таким образом, все, что мы воспринимаем как плотную материю, более чем на 99% состоит из одних только энергетических связей между физическими частицами и менее чем 1% — из самих физических форм.

Но что представляют собой эти физические формы? Из чего они состоят, и насколько они материальны? Чтобы ответить на эти вопросы, давайте подробнее рассмотрим структуры протонов, нейтронов и электронов. Итак, мы спускаемся еще на одну ступеньку в глубины микромира – на уровень субатомных частиц.

Из чего состоит электрон

Самая маленькая частица атома – электрон. Электрон обладает массой, но при этом не обладает объемом. В научном представлении электрон не из чего не состоит, а представляет собой бесструктурную точку.

Под микроскопом электрон невозможно увидеть. Он наблюдаем только в виде электронного облака, которое выглядит как размытая сфера вокруг атомного ядра. При этом с точностью, где находится электрон в момент времени, невозможно сказать. Приборы же способны запечатлеть не саму частицу, а только лишь ее энергетический след. Суть электрона не вкладывается в представления о материи. Он скорее подобен некой пустой форме, существующей только в движении и за счет движения.

Никакой структуры в электроне до сих пор не было обнаружено. Он является такой же точечной частицей, как и квант энергии. Фактически, электрон — и есть энергия, однако, это более устойчивая ее форма, нежели та, которая представлена фотонами света.

В настоящий момент электрон считают неделимым. Это понятно, ведь невозможно разделить то, что не имеет объема. Однако в теории уже есть наработки, согласно которым в составе электрона лежит триединство таких квазичастиц как:

  • Орбитон – содержит информацию об орбитальном положении электрона;
  • Спинон – ответственен за спин или вращательный момент;
  • Холон – несет информацию о заряде электрона.

Впрочем, как видим, квазичастицы с материей уже не имеют абсолютно ничего общего, и несут в себе одну только информацию.

Фотографии атомов разных веществ в электронный микроскоп

Интересно, что электрон может поглощать кванты энергии, например, света или тепла. В этом случае атом переходит на новый энергетический уровень, а границы электронного облака расширяются. Бывает и такое, что энергия, поглощаемая электроном настолько велика, что он может выскочить из системы атома, и далее продолжить свое движение как независимая частица. При этом он ведет себя подобно фотону света, то есть, он будто бы перестает быть частицей и начинает проявлять свойства волны. Это было доказано в эксперименте.

Эксперимент Юнга

В ходе эксперимента на экран с двумя прорезанными в нем щелями был направлен поток электронов. Проходя через эти прорези, электроны сталкивались с поверхностью еще одного – проекционного – экрана, оставляя на нем свой след. В результате такой «бомбардировки» электронами на проекционном экране появлялась интерференционная картина, подобная той, которая появилась бы, если бы через две прорези проходили бы волны, но не частицы.

Такой рисунок возникает из-за того, что волна, проходя между двух щелей, делится на две волны. В результате дальнейшего движения волны накладываются друг на друга, и на некоторых участках происходит их взаимное гашение. В результате мы получаем много полос на проекционном экране, вместо одной, как это было бы, если бы электрон вел себя как частица.

Структура ядра атома: протоны и нейтроны

Протоны и нейтроны составляют ядро атома. И притом, что в общем объеме ядро занимает менее 1%, именно в этой структуре сосредоточена почти вся масса системы. А вот на счет структуры протонов и нейтронов физики разделились во мнениях, и на данный момент существует сразу две теории.

  • Теория №1 — Стандартная

Стандартная модель говорит о том, что протоны и нейтроны состоят из трех кварков, соединенных между собой облаком глюонов. Кварки являются точечными частицами, так же, как кванты и электроны. А глюоны – это виртуальные частицы, обеспечивающие взаимодействие кварков. Однако в природе так и не было найдено ни кварков, ни глюонов, потому эта модель поддается жестокой критике.

  • Теория №2 — Альтернативная

А вот по альтернативной теории единого поля, разработанной Эйнштейном, протон, как и нейтрон, как и любой другая частица физического мира, представляет собой вращающееся со скоростью света электромагнитное поле.

Электромагнитные поля человека и планеты

Каковы же принципы строения атома?

Все в мире – тонкое и плотное, жидкое, твердое и газообразное – это лишь энергетические состояния бесчисленных полей, пронизывающих пространство Вселенной. Чем выше уровень энергии в поле, тем оно тоньше и менее уловимо. Чем ниже энергетический уровень, тем оно более устойчивое и ощутимое. В структуре атома, как и в структуре любой другой единицы Вселенной, лежит взаимодействие таких полей – разных по энергетической плотности. Выходит, а материя – только иллюзия ума.

Однако сфотографировать сам атом, а не какую-либо его часть представлялось крайне трудной задачей даже при использовании самых высокотехнологичных устройств.

Дело в том, что согласно законам квантовой механики , невозможно одинаково точно определить все свойства субатомной частицы. Этот раздел теоретической физики построен по принципу неопределённости Гейзенберга , который гласит, что невозможно одинаково точно измерить координаты и импульс частицы — точные измерения одного свойства непременно изменят данные о другом.

Поэтому, вместо того чтобы определять местонахождение (координаты частицы), квантовая теория предлагает измерить так называемую волновую функцию .

Волновая функция работает почти так же, как и звуковая волна. Различие лишь в том, что математическое описание звуковой волны определяет движение молекул в воздухе в определённом месте, а волновая функция описывает вероятность появления частицы в том или ином месте по уравнению Шрёдингера .

Измерить волновую функцию также непросто (прямые наблюдения приводят к её коллапсу), но физики-теоретики могут примерно предсказать её значения.

Экспериментально измерить все параметры волновой функции можно только в том случае, если собрать её из отдельных разрушающих измерений, проведённых на полностью идентичных системах атомов или молекул.

Физики из голландского исследовательского института AMOLF представили новый метод, не требующий никаких "перестроек", и опубликовали результаты своей работы в журнале Physical Review Letters. Их методика построена на гипотезе 1981 года трёх советских физиков-теоретиков, а также на более поздних исследованиях.

В ходе эксперимента команда учёных направила два лазерных луча на атомы водорода, помещённые в специальную камеру. В результате такого воздействия электроны покинули свои орбиты с той скоростью и в том направлении, которые определялись их волновыми функциями. Сильное электрическое поле в камере, где находились атомы водорода, направило электроны на определённые части планарного (плоского) детектора.

Положение электронов, попадающих на детектор, определялось их начальной скоростью, а не позицией в камере. Таким образом, распределение электронов на детекторе рассказало учёным о волновой функции этих частиц, которая была у них, когда они покинули орбиту у ядра атома водорода.

Движения электронов отображались на фосфоресцентном экране в виде тёмных и светлых колец, которые учёные сфотографировали цифровой камерой с высоким разрешением.

"Мы очень довольны нашими результатами. Квантовая механика так мало имеет дело с повседневной жизнью людей, что вряд ли кто-то мог подумать о получении реального фотоснимка квантовых взаимодействий в атоме", — говорит ведущий автор исследования Анета Стодолна (Aneta Stodolna). Также она утверждает, что разработанная методика может иметь и практическое применение, к примеру, для создания проводников толщиной в атом, развития технологии молекулярных проводов, что значительно усовершенствует современные электронные приборы.

"Примечательно, что эксперимент был проведён именно на водороде — одновременно простейшем и самом распространённом веществе в нашей Вселенной. Нужно будет понять, можно ли применить эту методику для более сложных атомов. Если да, то это большой прорыв, который позволит развить не только электронику, но и нанотехнологии", — говорит Джеф Ландин (Jeff Lundeen) из университета Оттавы, который не принимал участия в исследовании.

Впрочем, сами учёные, проводившие эксперимент, не задумываются о практической стороне вопроса. Они считают, что их открытие в первую очередь относится к фундаментальной науке, которая поможет передать больше знаний будущим поколениям физиков.

← Вернуться

×
Вступай в сообщество «passport13.com»!
ВКонтакте:
Я уже подписан на сообщество «passport13.com»